AM Da Revision 12 February B, 2008

RadeonR5xx Accekration

© 2008 Advanced Micro Devices, Inc.
Proprietary 1

AM Da Revision 12 February B, 2008

Trademarks

AMD, the AMD Arrow logo, Athlon, and combinations thereof, ATI, ATl logo, Radeon, and Crossfire are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corpora tion.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") pr oducts. AMD makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, wh ether express, implied,
arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any expre ss or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fithess for a particular purpose, or
infringement of any intellectual property right. ~ AMD's products are not designed, intended, author ized or warranted for use as
components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or
in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe
property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time
without notice.

© 2008 Advanced Micro Devices, Inc. All rights reserved.

© 2008 Advanced Micro Devices, Inc.
Proprietary 2

AM Da Revision 12 February B, 2008

I | I O 1 L L I 0]\ T 6
1.1 INTRODUCING TERIBCKXFAMILY, ... evteeeetttee et e e et e et e e e e e s et e e seb e e s e e es b e e e ba s eeeaba e s e ban s e s s s eeaneseannserernnns 6
1.2 [=N =] = ([T ST ST 6
1.3 Ly OSSR 1 = o | N 6
1.4 (@Y N €] SR = 2T 10T 5 o T 7

2 I 1 1 N 9
2.1 L7 = =V =N 9
2.2 1Y/ [To1 = T0 = I o1 =TT 9
2.3 1Y FYod 0 3= I 0 L1 = TR 9

R S U 1 = 4 o N O o @] 31 72N 1 T 11

4, COMMAND PROCESSOIR. ... ittt et eer e e et e e e e e e e et s e s amr s e e s saaa e e s e aba e esebanas 13
4.1 OVERVIEW . 1 ettt ettt et ettt e e et e et e et e st eaa e ea e e s s e b e e e e e e b e e e e s eheeea s sa s s e e s baeeea s e basean s ebsann s sbssransssnnas 13
4.2 HOSTPROGRAMMINGAODEIDESCRIPTION. .. tttttttuttttettetttseaneetusesseesteesnessterssstetsesstiersaestieraestannnn. 13
4.3 PUSH VBULLMODEL ... ittt ittt ettt et et et et e et s e s e e e ea s et s aa e et e n s e b s b s s e en e ea et sansennens 13
4.4 RINGBUFFERIANAGEMENT. ...t uitttttetti ettt eesaesetesatesstesaeesatssassa s st s eaasetestetsnsessarsterssstnressasstnreens 14
4.5 CHIPSEDOHERENGBSUES. ... ctuiitniiteittteettsea e st e saa e st s st sesa e sa s ea s et s e aa s abseansssn e e atasesaasstnsssnessrseren 16
4.6 INDIRECBUFFERAANAGEMENT ... ttttitteetitett e et etaeestesstersaeesttesa e ettt eaneestest sttt tetesstetsnsessssnsersnestnres 16
4.7 OVERVIEW OBV A OPERATION. 11ttt etttettttettt et e ea sttt e ssaee st s et saa s et s saa et esaa e st ssta e sassbnseasstnsssnssssseren 17
4.8 RESETTING TKIDMMANDPROCESSOR.uituiiitiiiiiiit e tiee et et e et et e et e s s e s et e s s e s st e ea e et eaneeaneenns 19
4.9 COMMANDSTREANSYNCHRONIZATION. 1.ttt tettteete et e eeteesaeseaes st esansesa e sansesasesnsesnsssnseanssensserssaseansrens 19
4,10 STARTING THEDIRECBTREAMSituitttiittiettettettett et eeteetettaee st arsestettaresttestaeetstsnsesnststaersnerrnres 20
4.11 WRITINGHOSTDATA TO THEOMMANDSTREAMUEUEutiuaaaaaeeeseeeeeeeeeeeeeeeeeeeaeeentntnenennnnnneeeeeeeeeeeaaens 21
4.12 WRITING TO THRICRENGINHRAMttt et e ettt e et e e e et e e e s et e ssa e st e ebesaesbnnas 22
4.13 READING FROM TIVHCRENGINHRAM. ... ittt ettt e e et e e e e et e et e e s e e sa s et e s eneernesennns 22
4,14 STARTING DM A OPERATION. 1. tttttttiteitteeet et e et ettt e est e st e e st e st e sae st e eaasste et ssaneessasssessestnsesnasstnes 23

5 PV ... et e e ————a e ettt eeetetteeteaa———aaaeetetaeeeetateettaa————neetetaerarraaraaaes 24
51 Y S = =T PTS 24
5.2 DEFINITION OFf PES PACKE TS .. tttutitutttteteaettntesaeestetaeeta et sttt ean et tea ettt tanatt et et rrentetseerasrenerenns 28

B. VERTEX SHADERS e e e e ettt e et et e e e e eaaa s eme b e e s e saa e e s seban e e sebbn s smerasaas 54
6.1 N0 16 [1 e N 54
6.2 1IN = T 54
6.3 VECTORIRDER AN ECTOR. B0 . ittt ittt ettt et et e et et e e e et e s e e et s san e e aa e e s en e ranseanssenns 59
6.4 AV e ISR 1 = 2T 60
6.5 R3(%XR5XXPROGRAMMABINERTE SHADERDESCRIPTION. .. .tuituiitiienetetieiaeeeseraneesnresnsernssenesseseneesnnssensd 66
6.6 SETTINAUP ANDSTARTING THEAP. .. oottt e e et e et e e e et e e e s sa e et e st saass 96
6.7 METHODS AR S S NG E R T E AT A . ittt ittt e e e e e e e e et et s e s ea e eaeea s e s ensea et sensenrensrnernranss 97

7. FRAGMENT SHADERS oot eee et e et e e ettt e e s et e s am e e seaba e e s ssaa e sesaaneans 98

© 2008 Advanced Micro Devices, Inc.
Proprietary 3

AM Da Revision 12 February B, 2008

7.1 |\ =T0] 18 Lo o PP 98
7.2 INSTRUCTIONS ... cuutttteeteeeeeeeeeeeessssssnteeeeeeeeeaeeesassaaaasnsessaeeeeeaeeaesasaaassansssbeneeeeeeeeeessaanssssssannnnneraaaenns 98
7.3 INSTRUCTIOIORDS. ...t tttttt e e ettt e e e et ettt e e e e et et s e e et e ettt e e e e e e tat s e e e e eetaa e e e e s anbn s eeeeeetannneeeesenrnnnsaanees 99
7.4 ALUINSTRUCTIONS . .11t ttttteeetesiiitittsaeeeeeeeeeeesessssssstsssessereeeeseeassasasssaseeereetaaaaeessssanassnrsssreereeeesaeannn 100
7.5 TEXTURBNSTRUCTIONS. 1.ttt teeteettttasseeseatanseesessssaaseesesstansasaessannaaeesesssanaeeeesssaaeeerssssnnsaeeeessnnnnsenes 108
7.6 R0 1117 0] 1 1 T) PSPPSR 110
7.7 FLOATINGPOINTISSUES. ... uuutttteettteeeeessssseeusstreseeeseeeeesssasssnstesansseeeeaaaesssaassstessssseeeseeaesessansnssnsnnereees 116
7.8 WRITING TQUSREGISTER ...ttt eetieiitie e e e ettt s e e sttt s e e e e e ettt s e e e e eat s e e e e e e taa s e aeseetaa e e aeeetaaaeeeeentannns 119
S T 1 7SS 121
8.1 {1\ 2T0] 010 Lo T] PP 121
8.2 ENABLINGHIZ. ...ttt e e e e et e e e et e et e e e e e e eaa s e e et e e b e e e e e e e eb e e e ea b s 121
8.3 (801N =10 =]\ (72PN 121
8.4 HIZOLEAR WITHIMAPACKET. ...ttt ettt ettt ite e e e ettt e e et ettt s e e e s aaa s e e e e e et e e e e e e et s e e e e e baa e e e eeeebaans 123
8.5 EXAMPLEPUTTING IALLTOGETHER 1.1t ttttteettt i ettt e e et e e eeae e e et s eeat s e e eaasa st s e eeta s eeeaansesetaeeeaanseenneeenen 123
8.6 STATECHANGETHATINVALIDATENIZ ...ttt e e et s e e e e e abb e e e e aba s 124
9. DRIVER NOTES ... it ree e e e e et ettt a bbb e bt st aeaa s e s s eababebabsasssssesesesssnsenrernne 125
9.1 L (@ 7 N €] =1 U UPTPPRPPPPPIN: 125
9.2 LN =oY@) @ 1 PR 127
9.3 L T Ry 1= (@ 1 =1 OO PPPTPPUPPS 128
9.4 N U (@ 1 L PPN 133
9.5 BLEND OPTIMIZATIONTEED. .. .vtttuueeeteettunsesessessusssessessssnesessssssan s easesssaseeseessssseessestsneesessssnseeesesssnnns 136
9.6 =0 0 - 1 1 =5 S 136
9.7 L 7 PSPPSRI 137
10. REGISTERS. ... oot e e e et e e bt e b abbeee b amaa s e e ab et e babsbbebebeseeeeeeeanrbnbnrerene 138
10,1 GOLORBUFFERREGISTERS. .. tttttttttieetettttiseasttstuseesetstteaeteeta e eteettsaaeteettan e eaaesssneeeeserstnnaeaaees 138
L10.2 FOGREGISTERS ... iiiitttit i e e tettttteeeeeettt e e e e eetta e eeeeaat e aaetaetaaaeaeeetaanneaeastannaeeeestannaeeeeastnnaaerernnnnn 154
10.3 GEOMETRASSEMBLIREGISTERS ... itittttttiuieeetettttnsestetttineseseesstaaeesantanaeeaeeastnaeeteesssaaaserssanaeaaees 157
10.4 GRAPHICBACKENREGISTERS. . .uutuuteetettttueteeteatuaaaeeestnnnaaeesesttnnaeeeetnnnaaeeeestnaeeeestnaaeeesssmnnaaereees 168
10.5 RASTERIZEREGSETERS. ..t uittttttttiteeetettiaseseestatteestaateaaeaettasaeettetaaateeaetstaateetssaeeeteetaeeeeeenns 177
O N T O I [= N T2 =] 31 = 3 180
J10.7 SETURUNITREGISTERS .ttt ttttttttsteetttttaseeteeattasseaseaeta s e et aata s e e aeeast s aeeteetesaeaaeetssasaeesenssnnseeeeeeenn 188
10.8 TEXTURBEGISTERS ..tuuueetitttttteeeetttueseeseattunaeeeestata e eesaetanaeeeeetataaetestannaaeestnnsaaerestnntaeeeeennanss 196
10.9 FRAGMENBHADERREGISTERS. ... u i tttttttttsteetttttusaeseestunaseeeeastanaaetaetssaeeeeeassaaeteettnneaaestnnnreeesesnnnns 207
10.10 B 11 3 T RS I = =P 232
10.11 Z BUFFERREGISTERS. ...ttttttuteetteettie s e et ettt e e e e eataa s e e et ee b a e e e eeataa e e e e et ae b e eeeeeaaa e seaeeastan s eeaeesesnnns 257

© 2008 Advanced Micro Devices, Inc.

Proprietary

AM Da Revision 12 February B, 2008

© 2008 Advanced Micro Devices, Inc.
Proprietary 5

AM Da Revision 12 February B, 2008

1. Introduction

1.1 Introducing the R5xx Family

The R5xx family provides the fastest and most advanced 2D, 3D, and multimedia graphics performance for desktop
PCs in the performance mainstream markets. The R5xx family supports Shader Model 3.0, adeamnmsd

interface technology, a brand new display controller and a consumer electronics (CE) quality TV (NTSC/PAL)
encoder The R5xx f amis2Xggenemton RC$ Expreésstechndayy product and leverages a brand
new graphics architecturéhe R5xx family builds on the R3xx architecture. As such, much of this guide is

applicable to R3xx and R4xx chips as well wittme caveats. Where applicalgenerational differences are noted.

1.2 Feature Highlights
1.2.1 Shader Technology

Support for Microsoft@DirectX® 9.0 programmable vertex and pixel shaders in hardware.
Shader Model 3.0 veex and pixel shader support.

Full speed 32it floating point processing.

High dynamic range rendering with floating point blemgdand antialiasing support.

High paformance dynaie branching and flow control.

Complete feature set also supported in OpenGL® 2.0.

=A =4 =4 -4 -8 -4

1.2.2 Anti-Aliasing

2x/4x/6x AntiAliasing modes.

Sparse multsample algorithm with gamma correction, programmable samgilerps, and centroid
sampling.

New Adaptive AnttAliasing mode.

Temporal AntiAliasing.

Lossless Color Compression (up to 6:1) at all resolutions, apdancluding widescreen HDTV.

= =

=a =8 =9

1.2.3 New Ring Bus Memory Controller

Programmable arbitration logic maximizes memory efficiency, softwpgeadeable.

New fully associative texte, color, and Z cache design.

Hierarchical ZBuffer with Early Z Test.

Lossless Buffer Compression (up to 48:1).

Fast ZBuffer Clear.

Z Cache optimizedoir reattime shadow rendering.

Optimized for performace at high display resolutions, up to and including widescreen HDTV.

=4 =4 =4 -4 -8 -89

1.3 Features in Detalil

1.3.1 2D Acceleration Features

1 A highly optimized 12&it engine, capable of processing multiple pixels/clock.

© 2008 Advanced Micro Devices, Inc.
Proprietary 6

AM Da Revision 12 February B, 2008

= =4 = = = =

Hardware acceleration provided for BitBLT, line drawipglygon and rectangle fills, bit masking,
monochrome expansion, panning and scrolling, scissoring, and full ROP support (including ROP3).

Optimized handling of fonts and text using ATI proprietary techniques.

Game acceleration including support for Misodt's DirectDraw: Double Buffering, Virtual Sprites,
Transparent BLT, and Masked BLT.

Acceleration in 8/15/16/3Bpp modes.
Support for WIN 2000 & WIN XP GDI extensions: Alpha BLT, Transparent BLT, Gradient Fill.

Hardware cursor support up to 64x64xX32p, with alpha channel for direct support of WIN 2000 & WIN
XP alpha cursor standard.

1.3.2 3D Acceleration Features

=a =4

= =4 =

Fully DirectX 9.0 compliant, including full speed-&2 floating point per component operations.
Shader Model 3.0 support with programneabértex shaders (full operand and operation support) allowing
up to 1024 instructions and 256 vectors of constant store. This includes vertex shader loops, branches, and
subroutines, whichliw support of the following:

0 1024 vertex shader instructioross.

0 261,888 istructions with a single loop.

0 4+ trillion instructions with nested loops.

o Dynamic flow control.

o 8full vertex processing units.
Advanced pixel shadsmwith the following features:

o New advanced shader design, with uttiteeading sequeer for high efficiency operations.

o Full Pixel Shader 3.0 support.

o0 Advanced, higtperformance branching support.

0 32-bit floating point support for gh dynamic range computations.
Full antialiasing on render surfaces up to and includiddpit floating point formats.
Support for 2xAA, 4xAA and 6xAA subsamples, with littlerformance loss in most cases.
Advanced AA quality algorithms, generating visuals that are superior to other solutions eithiealent
number of samples.
New adaptive artaliasing modes dynamically select between fast rualthpling and high quality super
sampling per polygon, deliveringetbenefits of both techniques.

1.4 Changes from R3xx/4xx

Changes from R3xx to R4xx

=8 =4 =8 =-4 -4 -8_8_4_49_9_9_-°9

Support forl, 2, 3 and 4 quad pixel pipes

Support fo 1to 6 vertex shader pipes

HDTYV resolution support for HiZ

Support of 16x16 and 32x32 pixel tile sizes (32x32 should now be the preferred amount)
Vastly redesigned Memory controller, with new client interfaces

Suppat for 8b of subpixel precision

Native supprt of 4Kx4K raster target

PS instruction support now at 512 each for Scalar, Vec3 and Texture (1536 total instructions)
VS native support for Sin/Cos

TX Component swizzling

Enhanced texture performance

MRT and wide pixel performance fixes

© 2008 Advanced Micro Devices, Inc.
Proprietary 7

AM Da Revision 12 February B, 2008

=A =4 =4 =4 -4

Fog alpha roundig matches RGB

Line stipple fixes; SU texture stuffingiprovements

LOD Clamp/bias reorder

2D support for larger pixels (Pitch at 16b)

4x AA buffer tiling is changed when memory mapping is not used

Changes from R4xx to R5xx

=4 =4 =8 -8 -8-0_0_0_4_4_4_4_-49_-24.-°

New Memory controller

Supportof VS3.0 features, except Vertex fetch

Support of all PS3.0 features, including extended GPRs and Constants, all branching and predication
New FP32 US, including most IEEE NANs, INFs behavior corrected (still TRUNC rounding mode)
Support of new Z ranged,2], with per pixel clamping in SC

Support of up to 11 texture sets (10 explicit), or 44 iterators

Support of color to texture mappings, and texture to color mappings (for performance improvements)
New IS_IP for better mapping of components from VS to PS

Color now in FP20 mode, instead of S3.12 mode

New HiZ compression mode, allows high precision Z values to be stored

New FP16 render surfaces support, including blending and all backend functions, but not texture filtering
Fully set associative caches foexture, Coloyand Z

New more efficientfifos for all MC clients

New Filter4 mode for Texture unit

New 1b texture mode for texture unit

© 2008 Advanced Micro Devices, Inc.
Proprietary 8

AM Da Revision 12 February B, 2008

2. Tiling
2.1 Overview
R3xx-R5xx supporttwo types of blocks

1 Micro block
T Macro block

Each block type can either be lineattitad.

2.2 Micro Blocks

A micro block refers to a 3Byte consecutive data in memory. It is aligned to 32 boundary, which means that
the 5 LSBs of a micrblock address are zeros. Micro blocks can be linear or tiled. Linear maps a 1D area of an
imageto the block. Tiled maps a 2D area of an image to a block. The following table shows the different type of
micro blocks and the region of the 2D image that maps to it (x X y)

Micro -linear Micro -tiled
8 bit pixel 32x1 pixels (x=32 , y=1) 8x4 pixels (x8 , y=4) supported by : tx/cb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 4x4 pixels (x=4 , y=4) supported by : tx/cb/zb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 8x2 pixels (x=8 , y= 2) supported by: tx/cb/hdp/disp
32 bit pixel 8x1 pixels (x=8, y%) 4x2 pixels (x=4 , y=2) supported by: tx/cb/zb/hdp/disp
64 bit pixel 4x1 pixels (x=4,y=1) 2x2 pixels (x=2 , y=2) supported by: tx/hdp
128 bit pixel 2x1 pixels (x=2, y=1)

2.3 Macro blocks

A macro block refers to a 2Kyte consecutive data in mery. Macreblocks loosely refer to the size a DRAM
page. How micro tiles are arranged in a madeois controlled by whether the maebtock is linear or tiled. Linear
macro block maps-rrder sequential array of mictdocks to a macrdlock. When theend of the current scan is
reached, the mactolock continues with data from the next migiie in the next scan. The alignment for Linear
macroblocks is 32 bytes. An image can generally be more compact using-limeseng but it is typically slower in
rendering performance. Tiled madotocks map a 2D region of micitdocks into a macrblock. Tiled macre
blocks are aligned to a 2Byte boundary, which means that the 11 LSBs of a ralorck address are zeros

There are 64 micrblocks in a macrdlock (X divided by 32 bytes). In a tiled maebbock these 64 micrblocks
are arranged as an 8x8. The number of pixels in x and y that map into a tiledbhoa&rs based on pixel size and
micro-block type. Multiplying the data from the previous table by 18 da this:

© 2008 Advanced Micro Devices, Inc.
Proprietary 9

AM Da Revision 12 February 3, 2008
Macro-tiled Macro-tiled
Micro -linear Micro -tiled

8 bit pixel 256x8 64x32

16 bit pixel (8x2) | 128x8 64x16

16 bit pixel (4x4) | 128x8 32x32

32 bit pixel 64x8 32x16

64 bit pixel 32x8 16x16

© 2008 Advanced Micro Devices, Inc.

Proprietary

10

Revision 12 February 3, 2008

AMDA1

3. Surface Formats

This section describes all dfd@surface formats used by the R3R&xx texture unis and frame buffes: These
formats are first listed in summary, together with a list of features (fog, blend etc.) supported by each format

8-bit Formats

Format Layout Range | Display Blend| Fog Dither| Filter
C_8 16543210 0.0 to 1.0 (unsigned)| Yes Yes | No | Yes | Yes
-1.0 to +1.0 (signed)
C2 4 T8-S5 4| 320 0.0to 1.0 Yes No [No [No | Yes
C_ 332 | e 5| B 2| 1co°| 0.0to 1.0 Yes No | No | No | Yes
16-bit Formats
C_16 15141312111 L 4.3 21 0.0 to 1.0 (unsigned)| No No | No | No | Yes
-1.0 to +1.0 (signed)
C_16_MPEG IJ&JA—BJ-M—J-L&—%—OY-A—&—‘L&—LIJ-I -1.0to +1.0 No No | No | No | Yes
C_16_FP 15141312111 L 4.3 21 -2™%t0 +2'° No No | No | No | No
C2_8 151413121110 9 8| 7 6 5 4(:03 2 1 0 00 to 10 (unsigned) YeS Yes NO Yes Yes
-1.0 to +1.0 (signed)
C565 15141312111 = 4321 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C655 1 = e 0.0to1.0 (uns_igned) No No [No [No | Yes
-1.0 to +1.0 (signed)
C4 4 el 0 s 2 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C1555 15141312111 = 4321 0.0to 1.0 Yes Yes | Yes | Yes | Yes

32-bit Formats

Format

Dither

Filter

Layout

C4_8 s apaare 1T = 8| % °| 0.0 to 1.0 (nsigned) | Yes Yes | Yes | Yes | Yes
-1.0 to +1.0 (signed)
C4_8 GAMMA s 2‘|‘ = 1f|3 = 8| % OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C_11_11 10 | =4 | ez) G OI 0.0to1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C_10_11 11 = 24 | L | are OI 0.0t0 1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C_2 10_10_10 &l 2 | e | = °| 0.0 to 1.0 (unsigned)| Yes No | No | No | Yes
-1.0 to +1.0 (signed)
C2_16 | 2 1T & °| 0.0t01.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C2 _16_MPEG | 2 1f|3 & OI -1.0to +1.0 No No | No | No | Yes
© 2008 Advanced Micro Devices, Inc.
Proprietary 11

AM Da Revision 12 February B, 2008

C2_16_FP | 24 4 g 9| -2°t0+2° No No | No |No | No

C 32 FP | 24 18 8 3 -2M%t0 +247 No No | No | No | No
24 16 8 Q

C_AVYU 0 AN MRS 0N AR 0.0to 1.0 Yes Yes | Yes | Yes | Yes

C VYUY v 2‘|‘ = 1? 7 8| ~ OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes

C _YVYU v 2‘|‘ v 1? 7 8| 5 OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes

64-bit Formats

Format Layout Range Display | Blend| Fog | Dither| Filter |

C4_16 | % 4|8 4 3|2 4 | & (i 0.0 t01.0 (unsigned) | No No | No | No | Yes
-1.0 to +1.0 (signed)

C4_16_FP - e -2™%t0 +21° No No |No |No | No

C2_32_FP [e e bl | 2510 2% No No [No [No | No

128-bit Formats

Format | Display |Blend| Fog | Dither| Filter

C4_32_FP s e e T R O No No | No | No | No

Depth Formats

Format Layout Write Read
24 16 8 0 “
W_24 | A Tnas i) OtoZ™1 Yes No
24 16 8 0 763 3
W_24_FP | — | | [2P0 +2 Yes Yes

© 2008 Advanced Micro Devices, Inc.
Proprietary 12

AM Da Revision 12 February B, 2008

4. Command Processor

4.1 Overview

The Command Processor is a programmable processor that is meant to provide-shipénelligence for a
Graphics Controller device. The CP architecture has been approached as gspeas@ computing engine,
targeted at fetching and interpretin@BOMO4 command stream.

The Command Processor takes on several tasks in a typical Graphics Controller:

1 Acts as a receiver of command streams from the video and graphics device driver(s) running on the host
CPU. These command streams are either read fretaraymemory using buwastering on the PCI or
AGP bus, or directly written to the CP from the host CPU using the PCI or AGRvit=t bus. Three
streams are supportédne Ring Buffer and two Indirect Buffers.

1 Parses and interprets a command streath,awr i t es t he parsed data to inter
Graphics Controller device; for example, a 3D graphics processor, a 2D graphics processor, a Video
Processor, or an MPEG Decoder. The data writes can be 32, 64, 96, or 128 bits per clock9&hangi4
128 bit writes wildl 0 Mectar writefmode is falidembhen the str&m (PQelQ1Mo d e 0 .
1Q2) is in Pull Mode. Push mode will only write DWORDSs (i.e. Lower®® of the 12&it data bus will
be valid with a DWOHREa ark B4t bvlites wikk onl§i @c@uowhite the alignment of
the data is not on a 18t boundary.

1 There are two generglurpose DMA engines inside the CP, one for &&lated tasks, and one intended for
Video Capture tasks. The DMA engines do byigrahent between the source and destination surfaces.

4.2 Host Programming Model Description

This section describes the manner in which the host CPU communicates with the graphics controller chip.

4.3 Push vs Pull Model

ThePush Models also referred to as Prognened 1/O (P10). In this model the host CPU is writing to the graphics
controller chip across either the PCI or AGP bus. Thai
graphics controller. This information is in one of two forms:

1) A sequence ofegister writes to setup the state of a processing engine on the graphics controller, and
then starting the engine running. Typically, engines are started asedfsitteof writing to a special
Atriggerd or Ainitiatorod register.

2) Asequence o€ommand Bckets whi ch are a Acompressedod way of ¢«
information to the graphics controller, relying on an intelligent processor in the graphics controller to
convert the command packets into register writes to other processing engines inties g@groller.

It is expected that option (1) above will only be used for debug purposes.

The Pull Modelutilizes busmastering on the part of the graphics controller, as it actively goes out and reads from an
area of system memory in which the host GRld previously placed command information. An important part of

the pull model is how the host and the graphics controller manage access to the shared buffer in system memory.
This is discussed in the following section.

The pull model allows more slip tveeen the CPU and the graphics controller than does the push model, assuming
that the command buffer for the push model is limited techip storage.

The push model may have some advantage when the overall system performance is taken into accobtsres it li
the bandwidth demand on system memory as compared to the pull model. The push model may be abigto make

© 2008 Advanced Micro Devices, Inc.
Proprietary 13

AM Da Revision 12 February B, 2008

for its limited slip by implementinganemh i p c o mmand bousffefreor itnhtaot thhsep iflrlasme b uf
this of course begins toaate a demand on the frame buffer bandwidth to write and read the command buffer.

The Command Processor will support both the push and pull models; however, switching between these two models
must be carefully controlled. It is intended that switchingpisdone often; most likely the model is chosen at reset

time, and never changed once the system is running. The pull model is the preferred choice for systems that allow
busmastering, and whose API allows concurrent processing between the host CP¥ guagbliics controller,

primarily because of its superior capability for overlapped processing. The push model is available for systems that
are not welsuited to using the pull model.

4.4 Ring Buffer Management

When the Graphics Controller is set to opematihe busmastering mode (pull model), the host application, say a
driver, has to allocate a block of system memory as a buffer faothenand packetsissues to the Graphics

Controller. The command packets, or simply packets, instruct the Graphmt®sl@o to carry out operations such

as drawing objects on the screen. This memory block is treated as if it is a ring that allows the packets to be placed
into and taken away from the memory in a circular manner, thus theRiagn&uffer

The Ring Buffe is a shared memory space between two cooperating processors. It is used to implemvagt one
communication from the Host processor (the Writer) to the Graphics Controller (the Reader). Each processor must
maintain the state that it believes that thegBuffer is in. The state is composed of:

1 Buffer Base: The address of the beginning of the buffer.

1 Buffer Size: The size of the buffer.

1 Write Pointer: The address that the Host is writing to.

1 Read Pointer: The address that the Graphics Controller ismgefdm.

In order for the Ring Buffer to work properly, both processors must maintain a consistent view of this state. The

Buffer Base and Buffer Size are generally initialized when the system is first bngugdnd rarely changed after

thatpoint. i s a simple task to initialize both the Reader ds
Write Pointers, on the other hand, change quite frequently as the Ring Buffer is in operation. In order to achieve
consistency, when the Writer (thehHost updat es t he Write Pointer, he must se
Graphics Controllerds) copy of the Write Pointer. And
send that value to the Writerdés copy of the Read Point

Packetsare placed into the memory block, or buffer, from the beginning towards the end, i.e., from lower addresses
toward higher addresses. Once the data placement hits the end, it starts from the beginning again. Meanwhile, the
packets are consumed from thetief the queue in a manner similar to how they were placed.

Figureillustrates how the ring buffer operates when combined with therassering operation.

© 2008 Advanced Micro Devices, Inc.
Proprietary 14

AM Da Revision 12 February B, 2008

Host start of buffer = end of buffer Graphlcs
- - : Controller
Write Pointer Address !
Buffer Base - , : - Write Pointer -
Buffer Size o Read Pointer

Write Pointer

Buffer Base

v ReadPointer)

Buffer Size

IE 3
X
. 3
Ring Buffer Packets Bus %
Server ' g
Mastering ©
Unit S
€
Q
O

Driver(s) free area

Read Pointer
Address

. Execution
Legend: | Regiser | | g

Figure: Ring Buffer and its Control Structure

In the figure, packets are placed into the buffer in a cowttekwise order, forming packet queuer he first
packet in the queue is denotedBy and the last byP, . The start of the queuds, , is pointed to by the Read

Pointer(s). The memory portion that is not occupied by packets is calléddlarea and it is pointed to by the
Write Pointer(s).

Initially, both the read and write pointers may point to the same location of the ring bufféheestart of the

memory block. The two pointers pointing to the same location of the ring buffer generally implies one of two

situations. One is that the buffer is empty, and the other is that the buffer is full. We want to define this situation as
anempty buffer. To resolve the ambiguity of both pointers being equal, we must prevent the case of a full buffer

from ever happening. I't is the Hostds responsibility i

On the host side, theider places command packets into the free area of the ring buffer, and informs the Graphics
Controller of any changes to the Write Pointer by writing directly to the Write Pointer register inside the Graphics
Controller. The host tracks frespace in théuffer by comparing its Read and Write Pointers, and suspends writing
if the buffer becomes (almost) full.

On the Graphics Controller side, packets are taken awaboae from the head of the packet queue, pointed to

by its Read Pointer, through the H@&s Interface, and placed into the Command Packet Buffer. As the Graphics

Controller updates its copy of the Read Pointer, ituses-alaus t er i ng wri te to update the
Pointer, residing in a shared memory location. The Graphiosr@ler has a register that holds the memory address

of where the Hostdés Read Point er -masteringdeits., TheaGnaghicei s es t ha
Controller tracks frespace in the buffer by comparing its Read and Write Pointedissuspends reading if the

buffer becomes empty (i.e., Read Pointer == Write Pointer).

To reduce traffic on the system memory bus, the Graphi
Pointer every time it changes on the Graphics Contrsitkr. To facilitate this, we have adopted a concept of a

© 2008 Advanced Micro Devices, Inc.
Proprietary 15

AM Da Revision 12 February B, 2008

blockof dwords in the packet queue. The Graphics Control
time it has caonmsutumedod filalt @ac K ® ® m inte wieen the Graghicé Cohtfolier . The
will update the Read Pointer is when it thinks that the packet queue is empty. The size of the block is

programmable, to allow the programmer to traffethe amount of time the system bus spends doing real data

transfer & the amount of time it spends on the communication overhead of updating read/write pointers. Larger

bl ock sizes tend to reduce communication overhead, at
which reduces t heecauplioglbetwveen the Hist and thedGraphjce Controller.

To reduce traffic on the system memory bus, the driver may want to minimize the frequency of accesses to its copies
of the Read and Write Pointers. To minimize reads of the Read Pointer, iterdntibem once, calculate an amount

of free space, and then decrement a local copy of the amount of free space as it adds packets to the queue. When it
sees that the fregpace is small (queue nearly full), it can start this procedure over again. pltsfacbe Read

Pointer may have changed since the last time he read it.) The host also has the option of updating the Graphics

Controll er 6s Wrfiequent bBsis ithantwihr eveoy mriteahe toesstasthe packet queue, possibly on a

blockbasissi mi | ar t o the Graphics Controllerdéds mechani sm. I
delay in updating the Graphics Controllerds Write Poinf
this command packet. Also,thehasti st be caref ul to update the Graphics

if it wants the Graphics Controller to read from the queue until it is empty.

When the queue has become (almost) full, the host will have to poll the Read Pointer until spaes laeailable.

In certain systems (Pentium Il for example), this polling will stay within the processor cache, thus avoiding traffic

on the system bus, and the snoop logic of the host CPU will take care of maintaining consistency between the main
memoryand the processor cache when the Graphics Controller performs-itsastering write of the Read Pointer.

It is important to note that the Read Pointer must reside in PCI space in order for this snoop technique to work.
AGP writes are not snooped.

4.5 Chipset Coherency Issues

The Ragel28 product revealed a weakness in some motherboard chipsets in that there is no mechanism to guarantee
that data written by the CPU to memory is actually in a readable state before the Graphics Controller receives an
updatetda t s copy of the Write Pointer. I'n an effort to all
Graphics Controller that will delay the actual write to the Write Pointer for some programmable amount of time, in

order to give the chipset time flush its internal write buffers to memory.

There are two register fields that control this mechanism: PRE_WRITE_TIMER and PRE_WRITE_LIMIT. There

is also a staging register placed Ain frosgointofhed t he ac!H
staging register and are held there until one of two events occurs: theedomter of PRE_WRITE_TIMER has

expired; or the host has written the staging register PRE_WRITE_L-titld@s, forcing the contents of the staging

register into the d@aal Write Pointer register. The dowounter is seeded with PRE_WRITE_TIMER every time

the host writes to the Write Pointer register address, and expires when it reaches zero. This implementation does not
guaranteea certain timedelay between the hostite to the Write Pointer, and the Graphics Controller read of the

system memory; because the host could flood the Graphics Controller with multiple writes (more than the
PRE_WRITE_LIMIT) in a short amount of time, thus overriding the tohetay imposed bthe

PRE_WRITE_TIMER. However, since the normal operation of this system is to increase the Write Pointer by some
significant amount with each write, it is likely that by the time the PRE_WRITE_LIMIT has been reached, the data

has in fact ribpagrm fipwes ttéehd p steh 6s write buffer by subsequ
memory.

Note that programming the PRE_WRITE_TIMER and PRE_WRITE_LIMIT to zero allows the chip to behave just
as the Rage128 did.

The above solution is based otirae delay,the assumption being that if the chipset is given enough time, the write
buffer will be flushed to memory, and become available for a coherent read.

4.6 Indirect Buffer Management

The Command Processor has the capability to read commands from other |dnatiensory, outside of the Ring

© 2008 Advanced Micro Devices, Inc.
Proprietary 16

AM Da Revision 12 February B, 2008

Buffer. These locations are known as Indirect Bufferl and Indirect Buffer2. This is accomplished as follows: there
is a packet in the Primary command stream (being read from the ring buffer) which sets up the Indineict Buffe
Address and Size registers of the Command Processor. The writing of the Indirect Bufferl Size register triggers the
Command Processor to begin fetching the new stream from the provided address. The last packet to be parsed from
the Primary stream i$i¢ one that sets the Indirect Bufferl Address and Size registers. The CP then begins fetching
data from Indirect Bufferl. The data stream in Indirect Bufferl may set up the Indirect Buffer2 Address and Size
registers of the Command Processor. As beferiging of the Indirect Bufferl Size register triggers the Command
Processor to begin fetching the new stream from the provided address. The last packet to be parsed from the
Indirect Bufferl stream is the one that sets the Indirect Buffer2 Addresszmce§isters. The CP fetches the

correct amount of data from Indirect Buffer2 until The Buffer2 Size is exhausted; it then returns to its interpretation
of packets from Indirect Bufferl. The CP fetches the correct amount of data from Indirect BufilettieuBufferl

Size is exhausted; it then returns to its interpretation of packets from the Primary Stream (being read from the ring
buffer).

4.7 Overview of DMA Operation

The DMA engines in the Command Processor fetch commands from the frame buffer membrielvthem what
to do. The command in memory is stored in a structure knowmasaiptor, having a fowdoubleword
(DWORD) format as shown below:

Ordinal Name Bit Function

0 SRC_ADDR 31:0 | Source address

1 DST_ADDR 31:0 | Destination address

2 COMMAND 31:0 | Command word. (See description below)
3 (Reserved) 31:0

The COMMAND word has the following format:

31 EOL End Of List Marker

30 INTDIS Interrupt Disable

29 DAIC Destination Address Increment Control
28 SAIC Source Address Increment Control

27 DAS Destination Address Space

26 SAS Source Address Space

25:24 DST_SWAP Destination Endian Swap Control
23:22 SRC_SWAP Source Endian Swap Control

20:0 BYTE_COUNT[20:0] Byte Count of Transfer

There are some constraints on the programming of the Descapttollows: If either the Source or the Destination
is in the register address space, or is programmed to baecr@menting, then the atomic transfer unit is assumed to
be a DWORD. Namely, the bottom tvaits of the BYTE_COUNT and the Address wi# lgnored (assumed
A000) .

Note that a BYTE_COUNT of zero will perform no operation.

Multiple Descriptors may be stored contiguously in memory to makeDgsariptor Table (DT)seeFigure. The
last Descriptor in the Descriptdiable must be marked as such so that the DMA engine knows when to stop
consuming commands.

The programmer provides the DMA engine with a pointer to the beginning of the Descriptor Table, and the DMA

© 2008 Advanced Micro Devices, Inc.
Proprietary 17

AM Da Revision 12 February B, 2008

engine fetches one Descriptor at a time, interpretsaheand to carry out a transfer, and then moves on to the
next Descriptor in the table. As mentioned above, the DMA engine will stop when it reaches the last Descriptor in
the table.

There is a bit called CP_SYNC in the Descriptor Address register (DMA T&RLE_ADDR). If this bit is set,

the DMA wiultldo filhceckmi croengine from performing any write
active. This mechanism can be used to synchronize a-ON\&n stream of register writes to the command FIFO.

among other things.

A DMA channel may have its operation aborted by writin:
register. It is important that the programmer then poll the ACTIVE bit of that same register, waiting for a value of
060006, bttfmgeawd0d to the ABORT_EN bit. Once the ACTI VE

back stable state from all DMA registers.

Memory Space

| TABLE ADDR Redistel—* Dword 0
Dword 1
Dword 2
Dword 3
Dword 4
Dword 5
Dword 6
Dword 7

Descriptor 0

Descriptor 1

Dword (n*4)
Dword (n*4)+1
Dword (n*4)+2
Dword (n*4)+3

Descriptor n (Last)

Figure: Descriptor Table Layout in Memory

An alternate method to writing the DMA_XXX_TBLE_ADDR register to initiate a DMA operation is to write the
descriptors directly to the CP. This saves the fetching of the descriptor table from memory.

Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,
CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORDs of the descriptor table entry described above. Except that the EOL-isoldiaal TRUE in

the COMMAND DWORD. Writing to the CP_XXX_COMMAND registemnitiates a DMA operation using the
descriptor described in all three registers. A table of descriptors can be built from multiplé papkets each

containing the SRC, DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 18

AM Da Revision 12 February B, 2008

4.8 Resetting the Command Processor

To support recovery from a powdown state the read pointer (CP_RB_RPTR) is writable. The read pointer is
initialized by writing the writable read pointer (CP_RB_RPTR_WR). Then, when the write pointer
(CP_RB_WPTR) is subsequently written the contents of the writable read pointerRCRPRR_WR) are

transferred to the active read pointer (CP_RB_RPTR). As a precaution, an enable bit must be set in the control
register (CP_RB_CNTL) to allow the contents to transfer to the active read pointer (CP_RB_RPTR). Note that the
read pointer stilresets to zero to ensure starting at the beginning of the buffer if the host does not initialize the
writable read pointer (CP_RB_RPTR_WR).

Therefore, a certain sequence of actions is Pequired of
1) Write CP_CSQ_CNTL and CP_CSQ_MODE to zero, effectively disabling the CP.
2) Write to the proper RBBM register to assert and theassert the Soft Reset signal to the CP.

3) Setthe RB_RPTR_WR_ENA bit to enable writing of the RPTR if desired not to starttieo
beginning of the buffer.

4) Write the CP_RB_RPTR_WR register if it is desired not to start at the beginning of the buffer.

5) Write CP_RB_WPTR, to make it match the RPTR, causing the ring buffer to appear to be empty.
6) Clearthe RB_RPTR_WR_ENA bit if no finer writes of the RPTR are desired.

7) Write CP_CSQ_CNTL or CP_CSQ_MODE to set the mode back to whatever you want.

4.9 Command Stream Synchronization

In the RBBM, there is an event engine that can be used to synchronize the sending of transactions to the Registe
Backbone based on status signals from its clients. The CP however has a mechanism that can directly provide the

Host with knowl edge of command status. This mechanism |
functionality.

Associated withthe i ght ASCRATCHO registers in the CP are a scra
scratch register is written, the CP will subsequently write its value to a location equal to what is programmed in the

SCRATCH_ADDR register plus the number (0tg of the scratch register. The wr
value by the CP is qualified by the registerds write m

So, at the end of processing an Indirect Buffer, for example, a0 yaeket can be inserted that writes a data

patern to SCRATCH_REG1. The driver software can poll the external location SCRATCH_ADDR+1 and when it

changes to the value that was inserted inthe-Dypepac ket , t he Dri ver wil/l Aknowo t
parsing the indirect buffer up to that poiNbte that this status only indicates that the CP is done to that point, the

data still may be being used by the rest of the pipeline.

© 2008 Advanced Micro Devices, Inc.
Proprietary 19

AM Da Revision 12 February B, 2008

For R5xxan interrupt is added associated with the scratch registers, which is asserted when the scratch register pair
sekcted is written to memory and is greater than or equal to the pair of values written by the Driver.

The CP can receive sync pulses from the bauk of the pipeline (CBA_CP_SYNC, CBB_CP_SYNC,
CBC_CP_SYNC, and CBD_CP_SYNC). When a pulse feathis receved (pulse pair), the CP will write the
targeted scratch register with the corresponding CP_RESYNC_DATA value. The targeted scratch register is
determined by the-Bit CP_RESYNC_ADDR which is a scratch register offset from the SCRATCH_ADDR base
address.

Because this function uses the SCRATCH_ADDR and SCRATCH_UMSK values, they must be initialized prior to
its use. The CP_RESYNC_ADDR and CP_RESYNC_DATA registerstalso be programmed with the target
scratch register offset and the appropriate data resphctigfore the pulses are received. Both the
CP_RESYNC_ADDR and CP_RESYNC_DATA values are written intte8p FIFOs so that multiple
synchronization events can begueued in the CP.

If the sync pulses from the CB are asserted before programming the SPNREADDR and

CP_RESYNC_DATA, the logic will still worlprovidingthat Dynamic Clocking for the CP is disabled. Receipt of

the sync pulses by the CP does not cause the clocks to be enabled to the CP, so knowledge of these pulses may not
be remembered if Dyamic Clocking is enabled. Writing the CP_RESYNC_ADDR and CP_RESYNC_DATA
registerdoese nabl e the c¢clocks to the CP. The fAbusyo signal
RESYNC data in the ADDR and DATA FIFQ<eeping the clock enabled tize CP.

4.10 Starting the Indirect Streams

A write to the CP_IB_BUFSZ register triggers the Command Processor to start fetching the command stream from
the Indirectl buffer, instead of from the Primary buffer. The CP will continue to fetch from the Indiuéfet]

starting at the address in the CP_IB_BASE register, and continuing until the CP_IB_BUFSZ amount is exhausted.
Then it will switch back to the Primary stream.

A write to the CP_IB2_BUFSZ register triggers the Command Processor to start fetctingithand stream from

the Indirect2 buffer, instead of from the Indirectl buffer. The CP will continue to fetch from the Indirect2 buffer,
starting at the address in the CP_IB2_BASE register, and continuing until the CP_IB2_BUFSZ amount is exhausted.
Thenit will switch back to the Indirectl stream.

Note that there are some important rules to follow when starting an indirect stream. Firstly, the write to the
CP_IB_BUFSZ or CP_IB2_BUFSZ register must bel#tst registerwrite of a Type 0 or Type 1 packethe very

next packet that is delivered to the Command Stream Interpreter is the first packet of the respective indirect buffer.
The second rule is that the respective CP_IB_BASE or CP_IB2_BASE register must have been setup with the
proper value beforéhe appropriate CP_IB_BUFSZ or CP_IB_BUFSZ register is written.

In PIO mode, the BUFSZ register still needs to be written with the size of the indirect buffer. Care must be taken to
write this register before the command queue fills in the CP.

© 2008 Advanced Micro Devices, Inc.
Proprietary 20

AM Da Revision 12 February B, 2008

4.11 Writing Host Data to the Command Stream Queue

Either or all of the Primary, Indirectl and Indirect2 streams can be delivered to the Command Processer via host
programmed writes to the Graphics Controller device. There is a range of reg@teraddresses assigneeéach

of the three streams, that is, one aperture for the Primary Stream, one for the Indirectl Stream, and one for the
Indirect2 Stream. The act of writing to a location in the aperture causes that data to be enqueued to the Command
Stream Queue. Notbat the actual address of the written data is inconsequential; the data will be enqueued into the
Command Stream Queue in thieler in which it was received from the host.

Note that each of the three streams can be in one of three delivery modesgresuitie possible combinations.
The three modes are:

1) OFF: The stream is disabled.

2) PUSH: The host is writing the stream data to the Command Processor. (also known as Programmed
I/0, or PIO mode)

3) PULL: The Command Processor is actively fetching the comretrtedm from memory. (also known
as Bus Master, or BM mode)

Note that the BUFSZ register must be written to initiaf

© 2008 Advanced Micro Devices, Inc.
Proprietary 21

AM Da Revision 12 February B, 2008

4.12 Writing to the MicroEngine RAM

In order to change a location in the MicroEngine RAM, first [t@CP_ME_RAM_ADDR Register with the
address of the RAM into which data is to be written. Next, the host performs two writes; the first must be to the
CP_ME_RAM_DATAH port, and the second to the CP_ME_RAM_DATAL port. Internally, the Command
Processor matains a 4ébit holding registers which concatenates the lowbit8 of the DATAH value to the top of
the 32bit DATAL value, and at the end of the write of the DATAL value, thebitG/alue is written to the RAM at

the location specified by the RAM Adels Register. The RAM Address Register is theniagtemented to point

to the next location in the RAM. This process of writing two data values may be repeated to write to successive
RAM locations without rdoading the RAM Address Register.

4.13 Reading from the MicroEngine RAM

In order to read a location in the MicroEngine RAM, first load the CP_ME_RAM_RADDR Register with the
address of the RAM from which data is to be read. This write triggers the Command Processor to rebi the 40
data value at that/&RMV location and transfer it to an internal-#@ holding register. Also, the RAM Address

Register is autincremented to point to the next location in the RAM. Next, the host performs two read cycles, the
first from the DATAH port, and the second fronetDATAL port. At the end of the DATAL cycle, the next

location of the RAM is transferred to the-B@ holding register, and the RAM Address Register is again auto
incremented. This process of reading two values may be repeated to read from sucedgdneatons without
re-loading the RAM Address Register.

© 2008 Advanced Micro Devices, Inc.
Proprietary 22

AM Da Revision 12 February B, 2008

4.14 Starting a DMA Operation
There are two methods to initiate a DMA operatidbescriptor Tables or Direct Descriptor Entry Register Writes.

To program a DMA operation via Descriptor Tables, the mnagner has to build the table in the frame buffer first,

being sure to mark the | ast entry of the | ist as AEnd
the descriptor table into the Descriptor Table Address Queue (DTAQ) througkxtHeMA TABLE_ADDR port.

The action of writing the first starting address into the DTAQ will trigger the DMA operation.

The type of transfer operation depends on the DMA_COMMAND DWORD in the Descriptor. It controls such
variables as: the length of thamisfer, whether the Source/Destination addresses are in mepamg or register
space, whether the Source/Destination addressesnmugonent with each transfer, and whether an interrupt is
generated when the entire Descriptor Table has been processed.

The second methodDirect Descriptor Entry Register Writédnvolves writing the three DMA Entry registers.
Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,

CP_XXX_COMMAND). The contents of these registers hdnedame fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORDs of the descriptor table entry. Except that the EOL is-badéd TRUE in the COMMAND
DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the descriptor described
in all three registers. A table of descriptors can be built from multiple -Dyp&ckets each containing the SRC,

DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 23

AM Da Revision 12 February B, 2008

5. PM4
5.1 Packet Types

When programming in the PM4 mode, we do not need to write directly to registers to carry out drawingngperatio
on the screen. Instead, what we need to do is to prepare data in the format@bPMénd Packeia the system
memory, and let the hardware (Microengine) to do the rest of the job.

Four types of PM4 command packets are currently defined. They aseQype2 and 3 as shown in the following
figure. APM4 command packet consists qglaeket headeridentified by field HEADER, and ainformation body
identified by IT_BODY, that follows the header. The packet header defines the operations to becahyeitie

PM4 micreengine, and the information body contains the data to be used by the engine in carrying out the
operation. In the following, we use brackets [.] to denote-biBfeld (referred to as DWORD) in a packet, and
braces {.} to denote a@ze-varying field that may consist of a number of DWORDs. If a DWORD is shared by more
than one field, the fields are separated by 6] 6. The f|
the field that appears on the far right taklee least significant bits. For example, DWORD [HI_WORD |
LO_WORD] denotes that HI_WORD is defined on bits3ll§ and LO_WORD on bits-05. A Gstyle notation of
referencing an element of a structure is used to refer to a subfield of a main fieldampiex
MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of MAIN_FIELD.

Type-0 packet

— CEEEEEEEEEEEN R
Bit position 1009876 54321009876543210287¢549334°
Packet header 00 COUNT a BASE_INDEX
REG_DATA 1
REG_DATA 2
IT_BODY
REG_DATA_n

Type-1 packet

—— 222222 2 2 U U 411
Bit position 10/ 98 7165143 210098765 4321028994344 °
Packet header 01 Reserved REG_INDEX2 REG_INDEX1
REG_DATA_1
IT_BODY
REG_DATA_2

© 2008 Advanced Micro Devices, Inc.
Proprietary 24

AMDA1

Revision 12

February 3, 2008

Type-2 packet

. - 3] 32| 2] 2] 2] 2] 2] 2[2 1

Bit position 110l ol 8l 71 6l 5l 4l 3 2 2(10
Packet header 10

Type-3 packet

. " 332222 2] 2] 2] 2 1

Bit position 110l 9l 8l 7 6| 5| 4l 3| 2 211 0
Packet header 11 COUNT Reserved
IT_BODY

5.1.1 Type0 Packet
Functionality

Write N DWORDs in the information body to tidconsecutive registersr to the register, pointed to by the
BASE_INDEX field of the packet header.

Format
Ordinal Field Name
1 [HEADER]
2 [REG_DATA 1]
3 [REG_DATA 2]
N+1 [REG_DATA N]

Header Fields

Bit(s) Field Name

Description

12:0 BASE_INDEX The BASE_INDEX[120] correspond to byte address bits [14:2]. So the
BASE_INDEX is the DWORD Memorynapped address.
The BASE_INDEX field width supports up to DWORD address: OX7FFF.

14:13 Reserved Reserved for future expansion of address space.
15 ONE_REG_WR | 0:- Write the cta to N consecutive registers.
1:- Write all the data to the same register.
29:16 COUNT Count of DWORD:s in the information body. Its value should bk iNthere

are N DWORD:s in the information body.

31:30 TYPE Packet identifier. It should be zero.

Note:Sy mb el roée:ads

Information Body

fndefined

© 2008 Advanced Micro Devices, Inc.
Proprietary

25

AM Da Revision 12 February B, 2008

Bit(s) Field Name Description

31:0 REG_DATA _x | The bits correspond to those defined for the relevant register. Note the sy
of REG_DATA_x stands for an integer ranging from 1 to N.

Comment

The wse of this packet requires the complete understanding of the registers to be written.
5.1.2 Typel Packet

Functionality

Write REG_DATA 1 and REG_DATA 2 in the information body respectively to the registers pointed to by
REG_INDEX1 and REG_INDEX2. Note that tlpacket cannot address the entire address space. It is recommended
that Type O packets be used instead.

Format
Ordinal Field Name
1 [HEADER]
2 [REG_DATA 1]
3 [REG_DATA 2]

Header fields

Bit(s) Field Name Description

10:0 REG_INDEX1 | The field pointdo a memorymapped register that REG_DATA 1 is written to.

21:11 REG_INDEX2 | The field points to a memomapped register that REG_DATA 2 is written to.

29:22 Reserved

31:30 TYPE Packet identifier. It should be 1 (one).

Information Body

Bit(s) Field Name Description

31:0 REG_DATA_x | The bits correspond to those defined for the relevant register.

5.1.3 Type2 Packet
Functionality
This is a filler packet. It has only the header, and its content is not important except for bits 30 and 31. It is used to

fill up the trailing space left when the allocated buffer for a packet, or packets, is not fully filled. This allows the
microengine to skip the trailing space and to fetch the next packet.

Format
Ordinal Field Name
1 [HEADER]

Header fields

Bit(s) Field Name Description

29:0 reserved

© 2008 Advanced Micro Devices, Inc.
Proprietary 26

AMDA1

Revision 12 February 3, 2008

[31:30 |

TYPE

| Packet identifier. It should be 2.

5.1.4 Type3 Packet

Functionality

Carry out the operation indicated by field IT_OPCODE.

Format
Ordinal Field Name
1 [HEADER]
2 {IT_BODY}
Header fields
Bit(s) Field Name Desciiption
7:0 Reserved This field is undefined, and is set to zero by default.
15:8 IT_ OPCODE Operation to be carried out. See section B.2 for details.
29:16 COUNT Number of DWORDsL1 in the information body. It is M if the information body
contains N DVORDs.
31:30 TYPE Packet identifier. It should be 3.
Information Body

The information body IT_BODY will be described extensively in the following section.

© 2008 Advanced Micro Devices, Inc.

Proprietary

27

AM Da Revision 12 February B, 2008

5.2 Definition of Type-3 packets

Type-3 packets has a common format in their headers. However, thef $iiwgr information body may vary

depending on the value of field IT_OPCODE. The size of the information body is indicated by field COUNT. If the
size of the information isl DWORDSs, the value of COUNT i-1. In the following packet definitions, we will

describe the field IT_BODY for each packet with respect to a given IT_OPCODE, and omit the header. The MSB
of the IT_OPCODE identifies whether this packet requires the GUI_CONTROL field (described later). A 1 in the
MSB of the IT_OPCODE indicates thatUGcontrol is required. A 0 in the MSB of the IT_OPCODE indicates that
the GUI_CONTROL should be omitted.

© 2008 Advanced Micro Devices, Inc.
Proprietary 28

AM Da Revision 12 February 3, 2008

5.2.1 Summary of packets

Packet Name IT OPCODE | Description

NOP 0x10 Skip N DWORDs to get to the next packet.

PAINT 0x91 Paint a number of rectanglestiva colour brush.

BITBLT 0x92 Copy a source rectangle to a destination rectangle.

HOSTDATA BLT 0x94 Draw a string of large characters on the screen, or cop,
number of bitmaps to the video memory.

POLYLINE 0x95 Draw a polyline (lines connectedthitheir ends).

POLYSCANLINES 0x98 Draw polyscanlines or scanlines.

NEXTCHAR 0x19 Print a character at a given screen location using the
default foreground and background colours.

PAINT_MULTI Ox9A Paint a number of rectangles on the screen with one
colour. The difference between this function and PAINT
the representation of parameters.

BITBLT_MULTI 0x9B Copy a number of source rectangles to destination
rectangles of the screen respectively.

TRANS BITBLT 0x9C 2D transparent bitblt operation.

PLY NEXTSCAN 0x1D Draw polyscanlines using current settings.

SET_SCISSORS Ox1E Set up scissors.

PRED EXEC 0x20 Predicated execute wrapper for a sequence of packets

COND_EXEC 0x21 Conditional execute wrapper for a sequence of packets

WAIT_SEMAPHORE 0x22 Wait in the CP micreengine for semaphore to be zero

WAIT_MEM 0x23 Wait in the CP micreengine for GPlhccessible memory
semaphore to be zero

3D _DRAW_ VBUF 0x28 Draw primitives using vertex buffer

3D _DRAW_IMMD 0x29 Draw primitives using immediate verticestimns packet

3D_DRAW_INDX Ox2A Draw primitives using vertex buffer and indices in this
packet

LOAD PALETTE 0x2C Load a palette for 2D scaling.

3D _LOAD_VBPNTR Ox2F Load pointers to vertex buffers

INDX_BUFFER 0x33 Load Indices Using Indirect Buffer #2

3D_DRAW_VBUF_2 0x34 Same as 3D_DRAW_VBUF, but without
VAP _VTX_FMT

3D_DRAW_IMMD_2 0x35 Same as 3D_DRAW_IMMD, but without
VAP _VTX_FMT

3D_DRAW_INDX_2 0x36 Same as 3D_DRAW_INDX, but without
VAP _VTX_FMT

3D _CLEAR_HIZ 0x37 Clear portion of the Hierarchal Z RAM

3D_DRAW 128 0x39 Draw packet to write to 12Bit VAP data port.

MPEG_INDEX 0x3A MPEG Packet Registers and Index Generation

5.2.2 2D Packets

The information body IT_BODY of-D packets may have the following format:

Ordinal Field Name
1 {SETTINGS}
2 {DATA_B LOCK}

© 2008 Advanced Micro Devices, Inc.

Proprietary

29

AMDH Revision 12

February 3, 2008

SETTINGS
This field consists of 2 subfields, GUI_CONTROL and SETUP_BODY.

Ordinal Field Name

1 [GUI CONTROL]

2 {SETUP_BODY}

1 SETTINGS.GUI_CONTROL

This field will be used to setup the register DP_GUI_MASTER_CNTL, and it also decides the céntent o

SETTINGS.SETUP_BODY

Bit(s)

Field Name

Description

Status

0

SRC_PITCH_OFF

The bit controls the pitch and offset of the blitting source.

0:- Use the default pitch and offset, and no datum
[SRC_PITCH_OFFSET] is supplied in SETUP_BODY.

1:- Use the daton [SRC_PITCH_OFFSET] supplied in SETUP_BODY|
to set up a new pitch offset.

DST_PITCH_OFF

The bit controls the pitch and offset of the blitting destination.

0:- Use the default pitch and offset, and no datum
[DST_PITCH_OFFSET] is supplied in SETUP_BODY.

1:- Use the datum [DST_PITCH_OFFSET] supplied in SETUP_BOD
The pitch may mean the bitmap pitch and the offset may points the 0
screen area of the video memory.

SRC_CLIPPING

This bit controls the clipping parameters of the blitting source.
0:- Use the default clipping parameters, and no relevant clipping datg
supplied in SETUP_BODY.

1:- Use datum [SRC_SC_BOT_RITE] supplied in SETUP_BODY to
up the bottom and right edges of the clipping rectangle.

DST_CLIPPING

This bit controls the clippingarameters of the blitting destination.
0:- Use the default clipping parameters, and no relevant clipping datg
supplied in SETUP_BODY.

1:- Use data [SC_TOP_LEFT] and [SC_BOTTOM_RIGHT] supplied
SETUP_BODY to set up a new clipping rectangle.

74

BRUSH_TYPE

Types of brush used in drawing. The type code determines how to sy
data to the subfield BRUSH_PACKET in SETUP_BODY. See detailg
definition of BRUSH_TYPE in the following.

11:8

DST_TYPE
{Not Used by uCode}

The pixel type of the destination.
0--1 - (reserved)

- 8 bpp pseudocolor

- 16 bpp aRGB 1555

- 16 bpp RGB 565

- reserved

- 32 bpp aRGB 8888

- 8 bpp RGB 332

- Y8 greyscale

- RGB8 greyscale (8 bit intensity, duplicated for all 3 channels. Grg
channel is used on wrig

10 = (reserved)

11 = YUV 422 packed (VYUY)
12 = YUV 422 packed (YVYU)

© 00 ~NO Ol WN

13 = (reserved)

7 throughl5
not supported in
3D pipe

© 2008 Advanced Micro Devices, Inc.
Proprietary

30

AMDA1

Revision 12

February 3, 2008

14 - aYUV 444 (8:8:8:8)

15 :aRGB4444 (intermediate format only. Not understood by the
Display Controller)

Note: choices 715 only valid in 3D mode.

13:12 | SRC_TYPE The field indicates the pixel type of blitting source.
{Not Used by uCode} | 0:- The source data type is mono opaque, and the dokbackground
colours need to be redefined.
1:- The source data type is monortsparent, and only the foreground
colour needs to be redefined.
2:- Reserved.
3:- The source pixel type is the same as that given in field DST_TYP
If bit 27 (SRC_TYPE) is one then the following new sources are
available:
4:- 4bpp source clut translatigMay not be supported, value reserved)
5:- 8bpp source clut translation
6:- 32 bpp source clut translation (gamma correction)
7:- 64 bpp Obuffer blit
14 | PIX_ORDER The bit decides the order of bits (or pixels) in DWORD to be consum
{Not Used by uCode} | Only applicable to the monochrome mode.
0 - Bits to be consumed from the Most Significant Bit (MSB) to the L
Significant Bit (LSB).
1 - Bits to be consumed from LSB to MSB.
15 COLOR_CONVT Reserved Not supported
{Not Used by uCode} in 2D pipe
23:16 | WIN31_ROP This field tells the GUI engine how the raster operation to be carried
{Not Used by uCode} | The code of this field follows the ROP3 code defined by Microsoft. §
WIN31 DDK for reference.
26:24 | SRC_LOAD The field indcates where the source data come from.
{Not Used by uCode} | 0,1 - Reserved
2 - loaded from the video memory (rectangular trajectory)
3 - loaded through the HOSTDATA registers (linear trajectory)
4 - loaded through the HOSTDATA registers (linear trajectory & byte
aligned)
Note that during 3D/Scale Operations (whenever
SCALE_3D_FCN@MISC_3D_STATE_REG is naero), this field is
ignored and data is always loaded from the 3D/Scaler pipeline.
27 SRC_TYPE Third bit of SRC_TYPE Compatible 128
{Not Used by uCode} code must write
zero to this
register.
28 GMC_CLR_CMP_FCN|] 0 - No change to CLR_CMP_FCN_SRC and CLR_CMP_FCN_DST| TBD
_DIS 1 - clear CLR_CMP_FCN_DST and CLR_CMP_FCN_SRCt0 0
{Not Used by uCode}
29 Reserved Reserved Reserved
{Not Used by uCode}
30 | GMC_WR_MSK_DIS | 0 - No Change to DP_WR_MSK/CLR_CMP_MSK
{Not Usedby uCode} | 1 :-Set DP. WR_MSK/CLR_CMP_MSK to Oxffffffff
© 2008 Advanced Micro Devices, Inc.
Proprietary 31

AM Da Revision 12 February B, 2008

31 BRUSH_FLAG This field indicates whether there is a field BRUSH_Y_X field in the
SETTINGS.SETUP_BODY.

0:- No such a field in SETTINGS.SETUP_BODY.

1:- Thereis a field in SETTINGS.SETUP_BODY.

1 SETTINGS.SETUP_BODY

This field may contain the following subfields. Their presence depends on therbits O
SETTINGS.GUI_CONTROL

Ordinal Field Name Description
1 [SRC_PITCH_OFFSET] | Bit 30: Select between untiled(@nd tiled (1)
Bit 31: select between no microtiling(0) and microtiling(1

Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes acro|
bits 21:00ffset in units of 1KB, 0 to 4GHAK

2 [DST_PITCH_OFFSET] | Bit 30: Select between untiled(0) and tiled (1)

Bit 31: select between no microtiling(0) and microtiling(1
Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes acro
bits 21:0 Offset in units of 1KB, 0 to 4GAK

3 [SRC_SC_BOT_RITE] [The parameters are used to setup the clipping area of the.sou
The implied coordinates of the tdgft corner of the clipping
rectangle is the same as the source.

[13:0] - x-coordinate of the right edge of the clipping rectanglg
number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

4 [SC_TOP_LEFT] The parameters are used to setup the clipping area of destina
[SC_BOT_RITE] SC_TOP_LEFT:

[13:0] - x-coordinate of the left edge of the clipping rectangle
number of pixels).

[29:16] - y-coordinaé of the top edge of the clipping rectangle
number of scanlines).

SC_BOT_RITE:

[13:0] - x-coordinate of the right edge of the clipping rectanglg
number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number afcanlines).

5 {BRUSH_PACKET } The content of this field is determined by field
SETTINGS.GUI_CONTROL.BRUSH_TYPESee the following
table for the possible content.

6 [BRUSH_Y_X] [4:0] :- x-coordinate for brush alignment.

[12:8] :- y-coordinate for brushlignment.

[20:16] = Initial value used for BRUSH_X pointer in drawing
Lines. When POLY_LINE iff, it is reloaded from BRUSH_X
at the end of the line. When POLY_LINEas, it is reloaded
from the current Brush pointer at the end of the line. Whenevd
BRUSH_X is updated, the field should be written with the sam
value.

1 SETTINGS.SETUP_BODY.BRUSH_PACKET

© 2008 Advanced Micro Devices, Inc.
Proprietary 32

AMDA1

Revision 12

February 3, 2008

Note that all but 6 and 7 are not available for lines, and 6 and 7 are only usable for lines.

BRUSH_TYPE | Description of the brush Packet size Packet cantent
0 A 8 x 8 mono pattern with the foreground | 4 DWORDs [BKGRD_COLOR]
and background colours specified in the [FRGRD_COLOR]
packet. Here the matrix is represented in tf [MONO_BMP_1]
formatcolumnby-row. [MONO_BMP_2]
1 A 8 x 8 mono pattern with the feground 3 DWORDs [FRGRD_COLOR]
colour specified in the packet and the [MONO_BMP_1]
background colour the same as that of the [MONO_BMP_2]
area to be painted.
2 Reserved not applicable
3 Reserved not applicable
4 Reserved not applicable
5 Reserved not applicable
6 A 32 x 1 mono pattern with the foreground 3 DWORDs [BKGRD_COLOR]
and background colours specified in the [FRGRD_COLOR]
packet. This pattern corresponds to the PH [MONO_BMP_1]
of Win95 DDK. And is only usable for lines
7 A 32x1 mono ptern with the foreground 2 DWORDs [FRGRD_COLOR]
colour specified in the packet and the [MONO_BMP_1]
background colour the same as that of the
area to be painted. This is PEN as well. An
is only usable for lines.
8 Removed, see 32x32 in 3D pipe not applcable
9 Removed, see 32x32 in 3D pipe not applicable
10 A 8x8 colour pattern. The pixel type is give| 16* N DWORDs, | [COLOR_BMP_1]
by field where N stands | [COLOR_BMP_2]
SETTINGS.GUI_CONTROL. for the number of | ...
DST_TYPE. bytes per pixel [COLOR_BMP_16*N]
with exception
that a 24BPP
pixel is still
represented by 4
bytes.
11 Reserved not applicable
12 Reserved not applicable
13 Use the colour specified in the packet as tf 1 DWORD [FRGRD_COLOR]
solid (plain) colour for the brush, i.e. a colg
brush without pattern.
14 Use the colour specified in the packet as tif 1 DWORD [FRGRD_COLOR]
solid (plain) colour for the brush, i.e. a colg
brush without pattern.
15 No brush used. 0

© 2008 Advanced Micro Devices, Inc.

Proprietary

33

AM Da Revision 12 February B, 2008

Brush packet content

Field Name Description

[FRGRD_COLOR] | The forground colour of the text in the RGBQUAD format.
bits [7:0] = intensity of Blue;

bits [15:8] = intensity of Green; and

bits [23:16] : intensity of Red.

bits [31:25] : reserved.

[BKGRD_COLOR] | The background colour of the text in the RGBQUAD format.
bits [7:0] - intensity of Blue;

bits [15:8] + intensity of Green; and

bits [23:16] : intensity of Red.

bits [31:25] : reserved.

[MONO_BMP_x] Raster data of monochrome pixels. One bit represents one pixel. If the
number of pixels for the field is ledsan 32, the pixels take the lower bits.
The remaining bits should be fil

[COLOR BMP_X] Raster data of colour pixels. The representation depends on the pixel ty

DATA_BLOCK

The composition of this field depends on the operation EDdBPCODEgiven in the header. Section B.2 gives
details ofDATA_BLOCHKuith respect tdT_OPCODE In the following, the fiel SETTINGSmay appear in the
definition of a packet, but will not be described further.

5.2.2.1 NOP
Functionality
Skip a number of DWORDSs to get the next packet.

Format
Ordinal Field Name
1 [HEADER]
2 {DATA BLOCK}
DATA_BLOCK

This field may consist of a number of DWORDSs, and the content may be anything.

5.2.2.2 PAINT
Functionality

Paint a number of rectangles with a colour brush.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}

© 2008 Advanced Micro Devices, Inc.
Proprietary 34

AM Da Revision 12 February B, 2008

DATA_BLOCK
Ordinal Field Name Description
1 [TOP_1 | LEFT_1] | The coordinates of the tdpft corner of the 1st rectangle to be painted.

LEFT_1: [15:0]: x-coordinate, ranging fror8192 to 8191. Bs 14 and 15
should be copies of bit 13.

TOP_1: [31:16} y-coordinate, ranging fror8192 to 8191. Bits 30 and 31
should be copies of bit 29.

2 [BOTM_1| RITE_1] | The coordinates of the botteright corner of the 1st rectangle to be paints
RITE_1: [150]:- x-coordinate, ranging fron8192 to 8191. Bits 14 and 15
should be copies of bit 13.

BOTM_1: [31:16]: y-coordinate, ranging fror8192 to 8191. Bits 30 and
31 should be copies of bit 29.

2nl [TOP_n| LEFT_n] The coordinates of the tdpft corner of the rth rectangle to be painted.

2n [BOTM_n| RITE_n] | The coordinates of the botteright corner of the #h rectangle to be
painted.

5.2.2.3 HOSTDATA BLT
Functionality

Copy a number of bipacked bitmaps to the video memory. It can be used to psinihg of large characters on the
screen. In other words, the function supports the LARGEBITGLYPH structure of Windows95 DDK.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [FRGD_COLOLR] Foreground colour in the RGBQUAD format. For meteacolour expansion]

only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque o
mono transparent (0 or 1).

2 [BKGD_COLOUR] Background colour inhe RGBQUAD format. For monto colour
expansion only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque o
mono transparent (0 or 1).

3 {BIGCHAR 1} Data block of the 1st character.

m+2 {BIGCHAR _m} Data block of the nth character.

1 DATA_BLOCK.BIGCHAR_x

Ordinal Field Name Description

1 [BaseY | BaseX] The coordinate ofthetedpe ft corner of the ch

© 2008 Advanced Micro Devices, Inc.
Proprietary 35

AMDA1

Revision 12 February 3, 2008

BaseX: [15:0] : x-coordinate.
BaseY: [31:16]- y-coordinate.

[HEIGHT | WIDTH]

The geometry of the bitmap.
WIDTH: [15:0] :- width of the bitmap.
HEIGHT: [31:16] = height of the bitmap.

[NUMBER[13:0]]

The number of DWORDs in the bitmap. It shouldnb& this case. The ma]
value is Ox3FFF.

4

[RASTER 1]

The 1st DWORD of th mono bitmap data.

m+3

[RASTER m]

The mth DWORD of the mono bitmap data.

5.2.2.4 POLYLINE

Functionality

Draw a polyline specified by a set of coordinates, Y,) , (X, ¥,). ... (X,,¥,), where coordinatéx,, ¥,) is the

beginning of the polyline, and coordinaf, , Y,) is the end.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}
DATA BLOCK
Ordinal Field Name Description
1 [YO | XO] The starting coordinate of the polyline.
X0: [15:0] :- x-component of the coordinaté0: [31:16]- y-component.
2 [Y1] X1] The 2nd coordinate of the polyline. Definition of bits is the same as ab0g
n+1 [Yn | Xn] The ending coordinate of the polyline. Definition of bits is the same as
above.

5.2.2.5 POLYSCANLINES

Functionality

Draw a number of scanlines and polyscanlines. The number can be one. The difference between a scanline and a

polyscanline is that a scanline has only one startingatdinate and one endingcwordinate while a polyscanline
has a number of startirending xcoordinate pairs.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}

© 2008 Advanced Micro Devices, Inc.

Proprietary

36

AMDA1

Revision 12 February 3, 2008

3 | {DATA BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [SCAN_COUNT] The number of scan subpackets identified by SCAN_x, where x denete
ordinal number of a SCAN subpacket.
2 {SCAN_ 1} The 1st scanline/polyscanline.
n+1 {SCAN n} The nth scanline/polyscanline.

1 DATA_BLOCK.SCAN_X

Ordinal Field Name Description
1 [NUM_LINE[13:0]] | The number of line segments in a polyscaniMaximum is Ox3fff.
2 [HEIGHT | TOP] TOP: [15:0] : y-coordinate of the polyscanline.
HEIGHT: [31:16] : The thickness of the line measured in pixels.
3 [END_1 | START_1]| START_1: [15:0] : the starting xcoordinate of the 1st line segment.
END_1: [31:5B]:- the ending xcoordinate of the 1st line segment.
n+2 [END_n |START_n] | START_n: [15:0] : the starting xcoordinate of theth line segment.

END_n: [31:16]: the ending »xcoordinate of the4th line segment.

5.2.2.6 NEXTCHAR

Functionality

Print a chaacter at a given screen location using the default foreground and background colours.

Format
Ordinal Field Name
1 [HEADER]
2 {DATA_BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [DST_Y | DST_X] The coordinates of the tdpft corner of the dstination bitmap.
DST_X: [15:0]= x-coordinate, ranging fror8192 to 8191. Bits 14 and 15
should be copies of bit 13.
DST_Y: [31:16]: y-coordinate, ranging fror8192 to 8191. Bits 30 and 3]
should be copies of bit 29.
2 [DST_H | DST_W] | The width ancheight of the destination bitmap, expressed in unsigned
integers.
DST_W: [15:0]: width. DST_H [31:16}: height.
3 [BITMAP_DATA 1] | The 1st DWORD of the bitmap data.

© 2008 Advanced Micro Devices, Inc.

Proprietary

37

AM Da Revision 12 February B, 2008

N+2 | [BITMAP DATA n] | The nth DWORD of the bitmap data.

5.2.2.7 PAINT_MULTI
Functionality

Paint a number of rectangles on the screen with one colour. The colour used is specified in field SETTINGS while
the location and geometry of the rectangles are specified in field DATA_BLOCK.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}
DATA BLOCK
Ordinal Field Name Description
1 [DST_X1 | DST_Y1] | The coordinates of the tdpft corner of the 1st rectangle.

DST_Y1: [15:0]: y-coordinate, ranging fror8192 to 8191. Bits 14 and 11
should be copies of bit 13.

DST_X1: [31:16]: x-coordinate, ranging fron8192 to 8191. Bits 30 and
31 should be copies of bit 29.

2 [DST_W1 | DST_H1]| The width and height of the 1st rectangle, expressed in unsigned intege
DST_H1: [15:0]: height.
DST_W1.: [31:16}: width.

2nl [DST_Xn|DST_Yn] | The coordinates of the tdpft corner of the fih rectangle.
DST_Yn: [15:0]: y-coordinate, ranging fror8192 to 8191. Bits 14 and 11
should be copies of bit 13.

DST_Xn: [31:16]: x-coordinate, ranging fror8192 to 8191. Bits 30 and
31 shouldbe copies of bit 29.

2n [DST_Wn | DST_Hn]| The width and height of the-thh rectangle, expressed in unsigned integer
DST_Hn: [15:0]: height.
DST Whn: [31:16]: width.

5.2.2.8 BITBLT
Functionality

Copy a source rectangle to a destination rectangle ottbkers It is assumed that the geometry of the destination is
identical to its source.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

© 2008 Advanced Micro Devices, Inc.
Proprietary 38

AM Da Revision 12 February B, 2008

3 | {DATA BLOCK} |
DATA_BLOCK
Ordinal Field Name Description

1 [SRC_X1 | SRC_Y1]| The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0} y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copies of bit 13.
SRC_X1: [31:16F x-coordinate, ranging fror8192 to 8191. Bits 30 and
31 should be copies of bit 29.

2 [DST_X1|DSTY1] | The coordinates of the tdpft corner of the 1st destination.
The definition of bits is the same as SRC_X1 and SRC_Y1.

3 [SRC_W1| SRC_H1]| The width and height of the 1st source bitmap, expressed in unsigned
integers.
SRC_H1: [13:0F height.
SRC_W1 [29:16]- width.

5.2.2.9 BITBLT_MULTI
Functionality

Copy a number of source rectangles to destination rectangles of the screen respectively. It is assumed that the
geometry of the destination is identical to its source.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [SRC X1 | SRC_Y1] | The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0}: y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copiesf bit 13.
SRC_X1: [31:16F x-coordinate, ranging fron8192 to 8191. Bits 30 and
31 should be copies of bit 29.
2 [DST_X1 | DST_Y1]| The coordinates of the tdpft corner of the 1st destination.
The definition of bits is the same as SRC_ X1 and SRC_Y1.
3 [SRC_W1| SRC_H1]| The width and height of the 1st source bitmap, expressed in unsigned
integers.
SRC_H1: [13:0F height.
SRC_W1: [29:16F width.

© 2008 Advanced Micro Devices, Inc.
Proprietary 39

AM Da Revision 12 February B, 2008

3nl [SRC_Xn | SRC_Yn]| The coordinates of the tdpft corner of the fth source bitmap.
SRC_Yn:[15:0]:- y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copies of bit 13.

SRC_Xn: [31:16F x-coordinate, ranging fror8192 to 8191. Bits 30 and
31 should be copies of bit 29.

3n2 [DST_Xn | DST_Yn] | The coordinates of the tdpft corner of the rth destination.
The definition of bits is the same as SRC_Xn and SRC_Yn.

3n [SRC_Wn| SRC_Hn]| The width and height of the-th source bitmap, expressed in unsigned
integers.

SRC_Hn: [13:0F height.

SRC_Whn: [29:16} width.

5.2.2.10 TRANS_BITBLT
Functionality

Copy pixels from the source rectangle to the destination with transparency.

Format
Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA BLOCK}

DATA_BLOCK
Ordinal Field Name Description

1 [CLR_CMP_ CNTL] | This field decides how the trarement blitting is done. See following for
details.

2 [SRC_REF_CLR] Source reference colour in the RGBQUAD format. This is the colour to
stripped off from the source.

3 [DST_REF_CLR] Destination reference colour in the RGBQUAD format. This is the catod
be preserved at the destination.

4 [SRC_X1 | SRC_Y1]| The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0}: y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copies of bit 13.
SRC_X1:[31:16} x-coordinateranging from-8192 to 8191. Bits 30 and
31 should be copies of bit 29.

5 [DST_X1 | DST_Y1]| The coordinates of the tdpft corner of the 1st destination.
The definition of bits is the same as SRC_X1 and SRC_Y1.

6 [SRC_W1| SRC_H1]| The width and heighdf the 1st source bitmap, expressed in unsigned
integers.
SRC_H1: [13:0F height.
SRC_W1:[29:16} width.

1 DATA_BLOCK.CLR_CMP_CNTL

This field controls how the source pixels are written to the destination, depending on the source and destination
reference colours and comparison settings. The source pixels may be filtered against the source reference colour,
and the destination pixels with a specific colour may be preserved according to field CLR_CMP_DST.

Bit(s) | Bit-Field Name Description

2:0 CLR_CMP_SK Strip off the source reference colour from the source pixels.

© 2008 Advanced Micro Devices, Inc.
Proprietary 40

AMDA1

Revision 12 February 3, 2008

0 - Do not strip off source pixels. All source pixels are written to the destinatio
1 - Block the blitting source. No source pixel is written to the destination.

2, 3 - reserved.

4 - Thesource pixels whose colour is equal to the reference colour are written
destination.

5 - The source pixels whose colour is NOT equal to the reference colour are W
to the destination.

6 - Reserved.

7 - The source pixels whose colour is elgiaathe reference colour will be XORed
with the foreground colour of a mono bitmap, and then written to the destinatig
That is, destPixel = srcPixel XOR foregrndColor if srcPixel is equal to the
foreground colour of a mono bitmap, specifically text.sTisireferred to as flipping
sometimes.

7:3 Reserved

10:8 | CLR_CMP_DST Preserve pixels at the destination.
0 - Do not preserve the destination pixels. All pixels from the source are writte
the destination.
1 - Preserve all the destination pixel Bource pixel is written to the destinatior
2, 3 - Reserved.
4 - The destination pixels whose colour is equal to the reference colour are
preserved. No source pixel is written on top of the pixels.
5 - The destination pixels whose colour is NOT edaahe reference colour are
preserved.
6, 7 - Reserved.

23:11 | Reserved

25:24 | CMP_ENABLE The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable function CLR_CMP_SRC
2 - Enable both CLR_CMP_SRC and CL&MP_DST. The final decision is bassg
on the agreement between decisions made separately.
3 - Reserved.

31:26 | Reserved

5.2.2.11 PLY_NEXTSCAN

Functionality

Draw a number of scanlines or polyscanlines using the current settings.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [HEIGHT | TOP] TOP: [15:0] : y-coordinate of the scanline/polyscanline.
HEIGHT: [31:16] + The thickness of the line measured in pixels.

3 [END_1 | START_1]| START_1:[15:0] : the starting xcoordinate of the 1stagh.
END_1: [31:16]: the ending xcoordinate of the 1st dash.

n+2 [END_n |START_n] | START_n: [15:0] : the starting xcoordinate of the 1st dash.

END_n: [31:16]: the ending xcoordinate of the 1st dash.

© 2008 Advanced Micro Devices, Inc.

Proprietary

41

AM Da Revision 12 February B, 2008

5.2.2.12 LOAD_PALETTE
Functionality

Set up the 3D agine scaler and load a palette for a consequent 2D scaling operation.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [SCALE_DATATYPE] | 1:- The palette has 16 entries (4 bpp palette).
2:- The palette has 256 entries (8 bpp palette)

3 [COLOR_1] The F'entry of the palette.
Data is in destination for mat

4 [COLOR_2] The 2 entry of the palette. Bits are defined as above.

n+2 [COLOR_n] The nth entry of the palette. n = 16 (4bpp) or ZB6pp)

5.2.2.13 SET_SCISSORS
Functionality

Set the scissors to the given parameters.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [TOP_LEFT] [13:0] - x-coordinate of the left edge of the clipping rectangle (in numbg
pixels).
[29:16] - y-coordinate of the top edge of the clipping rectangle (in numi
of scanlines).

3 [BOTTOM_RIGHT] | [13:0] :- x-coordinate of the right edge of the clipping rectangle (in numQg
of pixels).
[29:16] - y-coordinate of the bottom edge of the clipgprectangle (in
number of scanlines).

© 2008 Advanced Micro Devices, Inc.
Proprietary 42

AM Da Revision 12 February B, 2008

5.2.3 3D Packets
5.2.3.1 3D_DRAW_VBUF
Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_ FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16

5.2.3.2 3D_DRAW_IMMD
Functionality

Draws a set of primitives using vertices stored in pack

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vetices is bits: 31:16
4toend | Vertex data Up to 16,380 DWORDs of vertex data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 43

AM Da Revision 12 February B, 2008

5.2.3.3 3D_DRAW_INDX
Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet. Indices are
either 16bit or 32bit.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices ibits: 31:16

4toend | [indx16 #2 |indx16 #1] | Up to or 32,760 1it indices or 16,380 3Bit indices to vertex data points
or [indx32] to by state registers. The INDEX_SIZE field in the VAP_VF_CNTL regi
indicates whether the indices areHldi6or 32bit. See INDX_BUFFER
packet for support of more indices.

5.2.3.4 3D_DRAW_VBUF_2
Functionality
Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16

© 2008 Advanced Micro Devices, Inc.
Proprietary 44

AM Da Revision 12 February B, 2008

5.2.3.5 3D_DRAW_IMMD_2
Functionality
Draws a set of primitives using vertices stored in packet.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16
3toend | Vertex data Up to 16,381 DWORDs of vertex data

5.2.3.6 3D_DRAW_INDX_2
Functionality
Draws a set of printives using a vertex buffer(s) pointed to by state data, index from indices in packet.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

3toend | [indx16#2 |indx16 #1]| Up to or 32762 14bit indices or 16,381 3Bit indices to vertex data pointe
or [indx32 #1] to by state registers. The INDEX_SIZE field in the VAP_VF_CNTL regij
indicates whether thadices are 1bit or 32bit. See INDX_BUFFER
packet for support of more indices.

© 2008 Advanced Micro Devices, Inc.
Proprietary 45

AM Da Revision 12 February B, 2008

5.2.3.7 3D_DRAW_128
Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet. Data/Indices
are written to 12&it VAP vector data port to take advantage of the-ii2@lata path for sending data. The packet
should only be used in bus master mode.

Vector mode operates as follows:

1. Data will be written to the destination register (VAP_POR_DATA IDX_128) one DWORD at a tiihe unt
the source address of the data is aligned to a vector (128 bits).

2. Once aligned, the data will be written 1B&s per clock to the destination register. The CP does grouping
of the data such that it will wait until a full vector is available if the MGlow in returning the data that

was requested.

3. If the last DWORDs of a packet do not fill a vector, they will still be written in one clock, but the DWORD
write mask will be set accordingly.

Format
Ordinal Field Name Description
1 [HEADER] Header othe packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16
3toend | Data or Indices See other 3D _DRAW packets for details.
5.2.3.8

© 2008 Advanced Micro Devices, Inc.
Proprietary 46

AMDA1

Revision 12

February 3, 2008

5.2.3.9 3D_LOAD_VBPNTR
Functionality

Load the vertex arys pointers.

Format
Ordinal Field Name Description

1 [HEADER] Header of the packet
2 VTX_NUM_ARRAYS Number of arrays
3 VTX_AOS ATTRO1 Control for the first two arrays
4 VTX_AOS_ADDRO Pointer to first array
5 VTX_AOS_ADDR1 Pointer to second array
6 VTX_AOS_ATTR23 And so oné.
7 VTX_AOS_ADDR2
8 VTX_AOS_ADDR3
9 VTX_AOS_ATTR45
10 VTX_AOS_ADDRA4
11 VTX_AOS_ADDRS5
12 VTX_AOS ATTR67
13 VTX_AOS_ADDRG6
14 VTX_AOS_ADDR7
15 VTX_AOS_ ATTR89
16 VTX_AOS_ADDRS8
17 VTX_AOS_ADDR9
18 VTX_AOS_ATTR10l1
19 VTX_AOS_ADDR10
20 VTX_AOS ADDR11

5.2.3.10 3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.
Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 START Start
3 COUNT[13:0] Count[13:0]i Maximum is Ox3FFF.
4 CLEAR_VALUE The value to witke into the HIZ RAM.

5.2.3.11 INDX_BUFFER

Functionality

Initiates Indirect Buffer #2 (1B #2) to fetch data that is written to the destination address. The main reason for this

packet is to fetch indices from an index buffer. The packet however can be uset emfetgpe of data and write it

to destination address(s) in the chip.

To process an index buffer, first issue a 3D_DRAW_INDX packet with only the VAP_VTX_FMT and

VAP_VF_CNTL DWORDs (i.e. count = 1). Then process an INDX_BUFFER packet to supply the ithdites
would have otherwise been in the 3D_DRAW_INDX packet. Note: For a 3D_DRAW_INDX_2 packet, the
VAP_VTX_FMT is not present and the count in the header should be zero.

© 2008 Advanced Micro Devices, Inc.
Proprietary

47

AMDA1

Revision 12 February 3, 2008

The maximum size of the Indirect #2 Buffer is 8,192K DWORDRs determined by the BBHER_SIZE field. So
the maximum number of indices supported is 8,192Ki82r 16,384K 1ébit indices. These maximums may be
further limited by the design of the Vertex Fetcher/Vertex Cache. See the VAP specification for detalils.

Format
Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [ONE_REG_WR | ONE_REG_WR Bit 31 (Set for uppeword-aligned buffers)
SKIP_COUNT | SKIP_COUNTI Bits 18:16: Number of DWORDSs to discard at start of data buf
DESTINATION] DESTINATION Addresd Bits 120

3 BUFFER BASE[31:2] | Base Address of Buffér Written to CP_IB2_ BASE

4 BUFFER_SIZE[22:0] Size of Buffer in DWORDS$ Written to CP_IB2_BUFSZ to initiate the Indirect

Buffer #2. Note that the (BUFFER_SIZEL) also overwrites the CNT register in
the microengine so that the parser will not finish with this packet until all the da
from the IB #2 is transferre@or misaligned data, this number must be increase
1.

© 2008 Advanced Micro Devices, Inc.

Proprietary

48

AM Da Revision 12 February B, 2008

5.2.3.12 MPEG_INDEX
Functionality
Packed register writes for MPEG and Generation of Indices.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 [MASK] DWORD write Mask: Bits 15:0 are
write the register:

bitf0] VAP_PVS_CODE_CNTL_O present
bitfl] VAP_PVS_CODE_CNTL_1 present

bit2] VAP_PROG_STREAM_CNTL_O present
bit3] VAP_PROG_STREAM_CNTL_1 present

bitf4] VAP_PROG_STREAM_CNTL_2 present
bitf5] VAP_PROG_STREAM_CNTL_3 present
bit[6] VAP_OUT_VTX_FMT_O present

bit[7] VAP_OUT_VTX_FMT_1 present

bit[8] VAP_VTX_NUM_ARRAYS present

bitf9] RS_CQJNT present

bit{10] RS_INST_COUNT present

bit[11] TX_ENABLE present

bit[12] US_CODE_ADDR_O present

bit{13] US_CODE_ADDR_1 present

bit{14] US_CODE_ADDR_2 present

bit[15] US_CODE_ADDR_3 present

bit[16] US_CONFIG present

bit{17] RB3D_DSTCACHE_CTLSTAT present
bit{18] RB3D_COLOROFFSETO present

bit[19] RB3D_COLORPITCHO present

Conditional [Register Values] | Values to Write into Registers. Only present in packet if corresponding

© 2008 Advanced Micro Devices, Inc.
Proprietary 49

AM Da Revision 12 February B, 2008

3upto 22 Aipresento bit is set in the MASK
Next [VF_CNTL] Written Unconditionalda VAP_VF_CNTL register
Next+1 [NUM_INDICES] | Number of Index Base Values (0x3FFF Maximum)
Next+2 to [FIRST_INDEX] First Index of Quad. (0x0000 to OXFFFC)
Next+2+
For each #AFirst Indexo, CP wildl
NUM_INDIC
ES FIRST_INDEX
FIRST_INDEX+1
FIRST_INDEX+2
FIRST_INDEX+3
Last Values | [DUMMY] Any value is fine. Any number of dummy values are supported.

© 2008 Advanced Micro Devices, Inc.
Proprietary 50

AM Da Revision 12 February B, 2008

5.2.4 PRED EXEC
Functionality
Perform a predicated execution of a sequence of packets (type 0, 2, and type 3) on select devices.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 [DEVICE_SELECT | DEVICE_SELECT: [31:24] bitfield to select one or more device upo

EXEC_COUNT] which the subsequent predicated packets will be executed
EXEC_COUNT: [22:0]i total number of DWORDs of subsequent
predicated packets. This count wraps the packets that will be predic
by the device select.

5.2.4.1 WAIT_SEMAPHORE
Functionality

Wait for a semaphore to be zero before continuing to process the subsequent command streaare Tour
microcode ram slots set aside for use as semaphores. These are at offd@tfXFC

Notes

The driver/application executing on the CPU can write-reno values at any time to semaphore memory. The
application can write a nerero value to cae the CP micrengine to pause at the next WAIT_SEMAPHORE
packet in the command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and
ring buffers. The application can then write a zero to the semaphore to allowctbeengine to proceed.

The application can write to the semaphore memory by a direct (PIO) register write to two registers:
1. Write the semaphore offset (OXFC, OxFD, OxFE, or OXFF) t€fheME_RAM_ADDRregister.
2. Write the semaphore value (zero or fmmmo)to the CP_ME_RAM_DATAL register.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 Semaphore offset This is the desired semaphore to test in the wait loop. This can be any
0xFC, OxFD, OxFE, OxFF.
3 Semaphore reset Optional. This value, if present, is written to the semaphore offset oncsg
wait loop has been satisfied (i.e., once the semaphore is zero).

© 2008 Advanced Micro Devices, Inc.
Proprietary 51

AM Da Revision 12 February B, 2008

5.2.5 Miscellaneous Packets

5.2.5.1 COND_EXEC
Functionality

Perform a conditional execution of a sequence of packets @typeand type 3) based on a boolean stored in-GPU
accessible video memory.

This packet use the Indirect Buffer #2 (IB2) to read the boolean in memory. Therefore, this packet can not be
initiated from an IB2.

Notes

Care must be taken to make certain thdEE_COUNT contains the exact number of DWORDs for the subsequent
packets that are to be conditionally executed. The microengine will start parsing the DWORD immediately
following EXEC_COUNT DWORDs. If this is not a packet header, the device will encozorteption or hang.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 TWO This value must be 2
3 EXEC_COUNT EXEC_COUNT: [22:0]i total number of DWORDs of subsequent
conditional packets. This count wraps the packetswhbbe
conditionally executed.

5.2.5.2 WAIT_MEM
Functionality

Wait for a GPUaccessible memory semaphore to be zero before continuing to process the subsequent command
stream. The semaphore can reside in any-@&téssible memory (local or ndotal). The basaddress of the
semaphore must be aligned to a DWORD boundary. The semaphore in memory consists of two DWORDSs.

This packet has no ability to increment, decrement or otherwise change the contents of the memory semaphore.

The memory semaphore consists of MWORDSs: the actual semaphore and an extra DWORD with a fixed value
of two. The extra DWORD is required and guarantees that the command processamgiceocan loop properly
in order to repeatedly test the semaphore value as necessary. The semaybanézisd as follows:

Semaphore value

Fixed value of 2

This packet use the Indirect Buffer #2 (IB2) to read the memory semaphore. Therefore, this packet can not be
initiated from an IB2.

Notes

If both ordinal 3 (SEM_LEN) and the DWORD in memory follogithe semaphore value is not equal to two, the
CP micreengine will become confused and ultimately hang the hardware.

The driver/application executing on the CPU can write-peno values at any time to semaphore memory. The
application can write a nerem value to cause the CP mieeagine to pause at the next WAIT_MEM packet in the

© 2008 Advanced Micro Devices, Inc.
Proprietary 52

AM Da Revision 12 February B, 2008

command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and ring buffers.
The application can then write a zero to the semaphoreoto #ike micreengine to proceed.

Format
Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 SEM_ADDR[31:2] Memory semaphore device address (DWORD aligned)
This value is written to the CP_1B2 BASE in order to read the semaphd

3 SBEM_LEN Memory semaphore length
This value MUST be 2
This value is written to the CP_IB2_BUFSIZ in order to read the semap
the first time

© 2008 Advanced Micro Devices, Inc.

Proprietary 53

AM Da Revision 12 February B, 2008

6. Vertex Shaders

6.1 Introduction

The VAP includes the Vertex Fetcher and Vertex Cache which take commands andaerteam a command

stream and formats it into vertices and primitives. Typically, the commands are stored in a ring buffer and the
vertex data is stored as a separate array in memory, although there are other possibilities described later. The VAP
begirs operation when a command to render a set of primitives is received. Depending on the command, the VAP
will either expect vertex data to be sent, or it will perform the memory accesses to read the vertex data on its own.
The format of the vertex datadescribed later in this section.

The VAP includes a Programmable Vertex Shader (PVS) Engine which performs programmable operations on
vertices which are then subsequently assembled and clipped. This programmable processing path will also be used
to perfam all FixedFunction vertex processing after driver generation of a shader fromftiretlon state

settings.

The VAP includes a Clip Engine which will clip primitives (using the RM8cessed vertices) to the 6 frustum

planes as well as to 6 Usbefined Clip Planes. The VAP includes a Viewport Transform Engine (VTE) which
performs the perspective divide and viewport transformation operations on the vertex data and a Reciprocal Engine
(RCP) which performs an IEEE 28t mantissa accurate 1/X function.

6.2 Input

The input to the VAP is @ommand Packethich contains two parts: a command to render some set of primitives

(like a list of triangles), and a set of vertex data. As described later, the vertex data may be sent to the VAP or the
Vertex Fetcher mafetch the data. There are a number of different data formats which are possible. Data may be
stored as an array of structures (AOS), a structure of arrays (SOA), or in a strided vertex format. The AOS mode is
what has been used up to DX6. In AOS madleof the data for a vertex is stored sequentially as one contiguous
block of memory as shown Figure In SOA mode, the data for each parameter (like x or w) is stored as a separate
array. To get all of theada for a vertex, one must look into several different arrays. For example, assume that we
have eight vertices which have the parameters X, Y, W, S, and T. In SOA mode the data would be stored in five
different arrays as shown kigure In the strided vertex format, data is stored in several different arrays. Each

array holds a variable number of parameters. For example, the first array might hold the x, y, and z coordinates. A
second array might hold the diffe color, a third array might hold the S and T coordinates for a textureHigap.

shows how a strided vertex with x, y, z, w, S, and T might be stored. The holes in the xyz array are not required but
are showrto indicate the flexibility allowed with the strided vertex format.

dword O 1 2 3 4

Base Address —» | X0 | YO |wO| SO| TO
X1]Y1l|W1| S1| T1
X2 Y2|W2| S2| T2
X3 Y3|W3| S3| T3

Figure: AOS Vertex Data Storage

© 2008 Advanced Micro Devices, Inc.
Proprietary 54

AM Da Revision 12 February B, 2008

dword 0 1 2 3

Base Address ——» | X0 || X1 | X2 | X3|

Base Address ——» | YO0 || Y1 | Y2 | Y3|

Base Address ——» |WO|| W1|W2|W3|

Base Address ——» | SO || Sl| 82| 83|

Base Address ——» | TO || T1| T2| T3|

Figure: SOA Vertex Data Storage
dword o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base Address — [xo] o[zo [xa [va| zs] x2[v2 [z2] x3] v3[zzs [
Base Address —» |WO|W1|| W2|W3|

Base Address —» | so| o] s1| 1] s2] 12] s3] T3]

Figure: Strided Vertex Data Storage

To represent all of these formats, the Vertex Fetcher architecture allows for a vertex to be desernithgoles

arrays of structures Each array is described wittbase addressaacountand astride The base address points to

the beginning of the aay. The count indicates the number of dwords of vertex data in this array. The stride gives
the number of dwords to the next structure in the array of structures. The AOS vert@&iduoewith 5 parameters
would be represented with a single array which consists of 5 dwords with a stride of 5 dwords. The SOA vertex
from Figurewould be represented with 5 arrays. Each array would have a count of 1 and a stride oéttidéthe
vertex fromFigur would be represented with three arrays. The first array would have a count of 3 and a stride of 4.
The second array would have a count of 1 and a stride of 1. The third array wall ¢@unt of 2 and a stride of

2. A given implementation of this architecture may have a different maximum number of arrays of structures. If
only AOS is supported, then only one array is required. To support a strided vertex format with three Textures,
arrays would be required (xyz, w, diffuse, specular, SOTO, S1T1, S2T2.) To support a true SOA mode, each
parameter would require its own array.

The access to vertex data may be immediate or by an index. In immediate mode, the base addressaff an array
vertex data is provided. The vertex data should be read in the order in which it is stored to produce the desired
primitives. Inindexed mode, a base address to the beginning of the vertex data is provided along with a set of

indices. The indices atesed to access vertices in any order.

The vertex indices are clamped between a minimum and maximum state value which is supplied by the driver. This
prevents making requests to illegal or unavailable memory addresses.

Finally, the vertex data can be erdded as part of the command stream, or it can be stored in a separat&laeray.
figure belowshows all of the possible vertex data storage modes along with implementation details for each mode.

© 2008 Advanced Micro Devices, Inc.
Proprietary 55

AMDA1

Revision 12

February 3, 2008

The table below describes the parameters that may be invertex, as supplied to the graphics controller

device.

NOTE: With the R300 PVS-only vertex processing path and PS&@nly input vertex data mapping path, the
TCL (or PVS) input memories have no predefined mapping to vertex values. This is completely deterimed
by the driver FF->PVS conversion process. Due to this fact, the table below is fairly meaningless to the vertex
process. ltis retained as a guide to help describe the fixédnction possibilities for vertex data.

Type Param Description Format Applicable
eter Interface
(PRE-TNL/
POST-TNL
/ BOTH)**
Position0 XY X0 The x coordinate of the vertex IEEE floating point BOTH
YO The y coordinate of the vertex IEEE floating point BOTH
Position0 Z Z0 The z coordinate of the vertex IEEE floating point BOTH
Position0 W WO W or RHW (1/Homog W) coordinate of the | IEEE floating point BOTH
vertex
Vertex Blending | BWO0-4 | 0-4 Blend Weights IEEE floating point PRETNL
Weight(s)
PerVertex Matrix | PVMS | Vertex Blending Matrix Selects 8888 packed fixed point PRETNL
Select
Vertex Normal O NxO | The x coordinate of the vertex normal IEEE floating point PRETNL
NyO The y coordinate of the vertex normal IEEE floating point PRETNL
NzO | The z coordinate of the vertex normal IEEE floating point PRETNL
Point Size Modifier| PS Point Size Modifieii Point Sprite§ Post IEEE floating point BOTH
TCL only
Discrete Fog F Fog value' Post TCL only IEEE floating point POSTFTNL
Shininess0 Shine0 | Used for GL Material Pevertex Support IEEE floating point PRETNL
Shininess1 Shirel | Used for GL Material PeYertex Support IEEE floating point PRETNL
Color 0 ARGB | Typically Diffuse color and alpha weight Usually 8888, but can be BOTH
three or four separate IEEE
floating point values **
© 2008 Advanced Micro Devices, Inc.
Proprietary 56

AMDA1

Revision 12

February 3, 2008

Color 1 ARGB | Typically Specular color and @galpha weight| Usually 8888, but can be BOTH
three or four separate IEEE
floating point values **
Color 2 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color3 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 4 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separateEEE
floating point values **
Color 5 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 6 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 7 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Texture Coordinatg SO The 1st coordinate for texture number O IEEE floating point BOTH
Set 0
(usually the single dimension horizontal
component S)
TO The 2nd coordinate for texture number O IEEE floating point BOTH
(usually the two dimension vertical
component T)
RO The 3rd coordinate for texture number 0 IEEE floating point BOTH
(The 3" & 4™ components can have many
uses)*
Q0 The 4th coordinate for texture number 0 IEEE floating point BOTH
(The 3° & 4™ components can have many
uses)*
Texture Coordinatg Sl The 1st coordinate for texture number 1 IEEE floating point BOTH
© 2008 Advanced Micro Devices, Inc.
Proprietary 57

AMDA1

Revision 12

February 3, 2008

Setl

(usually the single dimension horizontal
component S)

T1

The 2nd coordinate for texture number 1

(usually the two dimension vertical
component T)

IEEE floating point

BOTH

R1

The 3rdcoordinate for texture number 1

(The 3° & 4™ components can have many
uses)*

IEEE floating point

BOTH

Q1

The 4th coordinate for texture number 1

(The 3" & 4™ components can have many
uses)*

IEEE floating point

BOTH

Texture Coordinatg
Set5

S5

The 1st coordinate for texture number 5

(usually the single dimension horizontal
component S)

IEEE floating point

BOTH

T5

The 2nd coordinate for texture number 5

(usually the two dimension vertical
component T)

IEEE floatingpoint

BOTH

R5

The 3rd coordinate for texture number 5

(The 3° & 4™ components can have many
uses)*

IEEE floating point

BOTH

Q5

The 4th coordinate for texture number 5

(The 3" & 4™ components can have many
uses)*

IEEE floating point

BOTH

Positiorl XY

X1

The x coordinate of the vertex for blending

IEEE floating point

PRETNL

Y1

The y coordinate of the vertex for blending

IEEE floating point

PRETNL

Positionl Z

The z coordinate of the vertex for blending

IEEE floating point

PRETNL

© 2008 Advanced Micro Devices, Inc.

Proprietary

58

AMDA1

Revision 12

February 3, 2008

Position1W w1 W or RHW (1/Homog W) coordinate of the | IEEE floating point PRETNL
vertex for blending

Vertex Normal 1 Nx1 | The x coordinate of the vertex normal IEEE floating point PRETNL

Nyl The y coordinate of the vertex normal IEEE floating point PRETNL

Nzl | The z coordinate of the vertex normal IEEE floating point PRETNL

** The Applicable Interface column is provided to specify which values are inputs to the TCL process and/or the

Figure: Vertex Parameters

Raster Process. All of the values can appetrar-VF at the same time, but PRBEL values are ignored by the
raster process and POSNL values are ignored by the TCL process. In the unlikely circumstance that PRUST

values are provided in the FVF as inputs to the TCL process, there will bélifyet@lpass these values around the

TCL process.

63Vector

With the move to a PS@nly and PVSonly Vertex Process, there is no fixed definition of data (or location of data)

Order and Vector

D6 s

in the input vertex memory. Therefore, the destinatiomovdocations in the PSC are fully flexible and map

directly into the corresponding location in the input vertex memory. The PSC also allows for write_mask and

swizzle capabilities to allow for more complex fixahction and/or shader usage.

The specialector known as the NULL vector is used to keep the pipeline flow the same when there are no vectors

to be processed. It is a sortf

Afspecial 6 vector

t hat each

engi ne

but it is used because we needsénd some kind of token down the pipeline for synchronization purposes.

The NULL vector is a vector that is not to undergo vector processing, but which will carry information in its
associated flags, such as endOfPacket . It is used when a verbeehateleted (for culling, clipping, or other
potential reasons) and there is no valid vertex to be sent with the control information.

For the case of TCL_BYPASS (or when there is no TCL present in the HW), the PSC destination vector locations

shall map diectly to the semantically defined locations of the GA input memories. In this mode, the discrete fog

knows

and point size terms can use the write_enable and or swizzle capabilities of PSC to get the terms into the appropriate

channels.

© 2008 Advanced Micro Devices, Inc.

Proprietary

59

AM Da Revision 12 February B, 2008

6.4 VAP Reqgisters

6.4.1 VAP Verex Data Port Registers

The DATA and IDX PORT registers are written with either primitive vertex data or primitive vertex indices after a
Atriggero write has occurred. A fAtri ggerzéromimitypee i s a

Thecorrect (expected) number of data words or index words must be written to these registers or undefined
behavior will result.

For R300, there is a new DATA/IDX port register added for-t2&ccess. This register is only accessible via a
PM4 Type3 packt and can only be used for indexed TRI_LIST and LINE_LIST. Other than theygrén
limitations, using this 128it register (or PM4 Type 3 packet opcode) is identical to using the standard method.

The PRIM_WALK field in the VAP_VF_CNTL register definegat method of vertex data or indx updates are to
occur.

1 =Indexes (Indices embedded in command stream; vertex data to be fetched from memory)

In this mode, vertex indices are written to the DATA/IDX port registers. Data is fetched using the A@Sgsegis
corresponding to the indices in the input list. The number of indices expected is
VAP_VF_CNTL.NUM_VERTICESi 1. This mode does not use the VAP_VTX_SIZE register. The size of the
vertices is determined by the AOS register setup.

2 = Vertex List Yertex data to be fetched from memory)

This mode does not require any vertex data or vertex indices written to the DATA/IDX port registers. Data is
fetched using the AOS registers for the indices from 0 to VAP_VF_CNTL.NUM_VERTICESIdentical to
Indexes mode, except indices are internally generated.

3 = Vertex Data (Vertex data embedded in command stream)
In this mode, the vertex data is written to the DATA port registers. The number of DIWORDS expected is

VAP_VTX_SIZE.DWORDS_PER_VTX * (VAP_VF_CNTL.NW_VERTICESI 1). The VAP_VTX_SIZE
register is new to R300.In R100 / R200, this size was derived from the VAP_VTX_FMT_0/1.

6.4.2 VAP Control Register
The PVS_NUM_SLOTS should be set to the minimum of
1 the MAX_SLOTS, (POR is 10)
1 the INPUT_VTX_MEM_SIZE / INRJT_VECTORS_PER_VTX (POR is 128 / Var)
1 the OUPUT_VTX_MEM_SIZE /| OUTPUT_VECTORS_PER_VTX (POR is 128 / Var)

These equations assume the input and output vertex data has been packed. If not, use the
MAX_INPUT_VECTOR_USED instead of INPUT_VECTORS_ PER_VTX

The PVS_NUM_CNTLRS should be set to the minimum of
§ the MAX_CNTLRS, (POR is 6)
1 the TEMP_VTX MEM_SIZE / TEMP_VECTORS PER_VTX (POR is 128 / Var)

© 2008 Advanced Micro Devices, Inc.
Proprietary 60

AM Da Revision 12 February B, 2008

These equations assume the temp vertex data has been packed. If not, use the MAX_TEMP_VECTOR_USED
instead of TEMP_VETORS_PER_VTX.

When modifying either of PVS_NUM_SLOTS or PVS_NUM_CNTLRS, a flush must be inserted prior to the
update.

The PVS_NUM_FPUS will typically remain constant for a given chip, but can be used for performance testing.

The Shader HW will support up a max of 32 vectospervertex of input data and 3&ctorspervertex of temp
data as long as the NUM_SLOTS and NUM_CNTLRS are set to obey the-désagbed rules.

New R5xx Fields

The TCL_STATE_OPTIMIZATION bit enables a hardware optimization to imp rove small batch and
multiple instance performance. The TCL_STATE_OPTIMIZATION is a bit which should be set all the time.
The bit can be reset to return operation to preR5xx status.

6.4.3 R300 Edge Flag Support Description

Edge Flags refers to the bits whiate provided, generated and/or modified during the primitive process which
affect which edges (lines) or points of a triangle are drawn when in a wireframe or point fill mode. Edge Flags are
not applicable to line or point primitive types, but are agtlie to all 3 or moraided primitives (i.e quad, polygon,

etc). R300 will support edge flags for wireframe rendering as follows

1. Prim Type initialization of edge flags is done by the vertex fetcher logic. Edge flags are initialized
by the vertex fetchebased on the VAP_VF_CNTL.PRIM_TYPE field. The edge flags values for
points and lines are not used during the triangle fill process, so are irrelevant. The edge flags for all
triangle primitive types are all 3 set. For more complex prim types likescaradi polygons, only
the exterior of the primitive is supposed to be drawn, so the vertex fetcher applies the edge flags in a
way which only sets the bits which correspond to an external edge of the supplied primitive.

2. Clipping modification of edge flags done by the clipping processor according to the OpenGL
specification. Basically, the rule is that edges introduced by clipping (which would lie along a clip
plane) will always have thier corresponding edge flag set and edges which are fragmeng of initi
edges would retain thier original edge flags. The boundary edges introduced by clipping may be
either always set or never based on the VAP_CLIP_CNTL.BOUNDARY_EDGE_FLAG_ENA bit.

6.4.4 Input Vertex Format Registers
The VAP_VTX_FMT_0 and VAP_VTXFMT _1 registes were used for Basons on R200:

1. Decoding / Data Conversion / Data Direction of Vertex Stream Data from output of Cache to Vector
| D6 s

2. Computation of Dwords/Vtx for Command Stream load of vertex data.
These registers will no longer exist for R300. They replaced as follows:

1 The Decoding / Data Conversion / Data Direction will be controlled completely by the Programmable
Stream Control logic. R300 will contain the additional functionality of component swizzle and write
mask specification to ensurdlfoontrol of input stream.

1 The computation of Dwords/Vtx will be replaced by the VAP_VTX_SIZE register which must be
loaded by the driver when using command stream vertex data.

6.4.5 TCL Output Vertex Format Reqgisters

The purpose of these controls is to intkcahich vertex data should be transmitted from the PVS output vertex

© 2008 Advanced Micro Devices, Inc.
Proprietary 61

AM Da Revision 12 February B, 2008

memories, and from which vector locations they come. The PVS output vertex memories are not directly mapped to
semantic values to enable the spbttex mode described later. The RASR VTX_FMT_0/1lregisters define
which values will be transmitted from PVS to CLIP/Setup to GA to Raster.

The locations of the vectors in the PVS output memory must be packed based on the VAP_OUT_VTX_FMT_0/1
register settings. Only the fields which aregant in the OVFRs should be packed in the output memory. The
packing order is as follows: Position is always in location 0, Point Size (if present) is next (Point Size consumes an
entire vector in the memory, thec¢hannel is the value used by the rgst€olors (03) are next (if present), and

Textures (67) are next (if present). For example if the OVFR specified POS, PNT_SIZE, CO, C2, T1 and T5, these
vectors should be mapped (by the shader output operand offsets) to Output Memory loeatiesgtively.

For Points (Sprites) using Tex Gen (GB_ENABLE.TEX#_SOURCE == STUFF), the
VAP_OUT_VTX_FMT_1.TEX# should not be set. This is because, in general, there is no texture coordinate data
transferred from VAP to GA for this case. In the case of pdipppiag with tex gen, VAP will send these texture
coordinates to the GA even though the OVFR bit is not set, as follows:

OVFR COUNT STUFF TEX DESIRED CHANGED RESULT

0 0 No texture ever

0 >0 Clipper and/or GA creates (stuffs)
texture

>0 0 Normal texturguse vertex/pvs
texture)

>0 >0 Normal texture (use vertex/pvs
texture)

There is also the ability to pack 2dBnensional textures into a singlecdmponent texture for the VAPGA
interface by only specifying one texture and mapping the raster staiakdt is two textures.

6.4.6 Vertex State Control

This vector controls how the peertex state is processed. This input method is designed for OpenGL Immediate
Mode and Display List Processing.

UPDATE_USER_COLOR_0/1_ENA are deleted from R300 since treepairneeded, only one user color is
required.

The COLOR_# ASSEMBLY_CNTL change fror2 fields on R200 to -bit fields on R300 since there is only 1
USER COLOR.

6.4.7 Programmable Input Stream Control Registers

These registers control the pestrtexcache mapping of input vertex stream data to the vector ids for TCL or SE
input memories. These registers replace the R200 Input Vertex Format Registers. Terminology: A vertex is
composed of multiple (up to 16 for R300) streams. A stream can be composdtpiéralements (where an

element is pos or norm or texcoord). The control data is arranged as 16 sets of element control data. There is not
necessarily a onfor-one mapping of stream to element. The stream control shall be set up in the orderdéuat the

is received (or fetched).

The DataType specifies the number of DWORDS and format for each input element.

The SkipDwords specifies the number of DWORDS to skip (discard from the input stream) after the corresponding

© 2008 Advanced Micro Devices, Inc.
Proprietary 62

AM Da Revision 12 February B, 2008

element has been processed. THmnad multiple norcontiguous elements to reside within one stre&Al®TE:
There is not support for skipping DWORDS prior to the first element, the assumption is that the driver can
prevent this from occurring.

There are two sets of PSC control registdns,VAP_PROG_STREAM_CNTL - are identical to the R200
registers of the same name. R300 adds VAP_PROG_STREAM_CNTL_EXWhich are extensions to the first
set of registers to allow a swizzle and write_mask capability. The expectation is that the E¥Fs&gll not be
updated frequently, biihey must be updated at least once to provide default control

The DstVecLoc specifies the destination vector location (TCL / SE input vector address) for the given element.

The data type of FLOAT_8 has beerdad to R300 to permit using input vertices greater than 16 vectors. By
making sure that the VAP_CNTL.PVS_NUM_SLOTS and VAP_CNTL.PVS_NUM_CNTLRS are appropriately
sized, it is possible to use up to 32 vectors for the input vertex representation.

6.4.8 PVS Statd-lush Register

Since the driver is given control over mistate updates to PVS Code and Constant memories, there is the need for

the driver to be able to force a fAflusho of the state
force a flush of TCL processing so that both versions of TCL state are available before updates are processed. This
register is write only, and the data that is written is unused.

6.4.9 PVS Vertex Timeout Registe

A condition can occur in the HW, in pathologicartex reuse cases, where when many primitives are sent which do
not use any new verts, the HW could hang. The solution for this hang is to wait a programmable number of clocks
when in the condition of primitive buffer full and waiting on vertices. Aftés number of clocks has passed

without receiving any new vertex data, the accumulated vertex data (less than 4 vertices) will be submitted to the
PVS engines. This register defaults to OXFFFFFFFF.

6.4.10 VECTOR Indx/Data Update Register Pair

The Vector IndxXData pair is used to update all TCL vector state memories.

There are basically 2 vector memories, the PVS Constant Memory and the PVS Code Memory.

The index register contains the octword offset to write to (or read from) on the subsequent DATA_REGuritglire
writes/reads must start octword aligned. An internal Dword counter is incremented each time a write or read occurs
to/from the DATA_REG. The Dword counter is reset when the index register is written (or read). When the dword
counter rolls fronB back to 0, the index register value (octword address) is incremented. (Writes to the DATA_REG_128
register do not use or affect the dword counter. The DATA_REG_128 register is not readable.

The VAP_PVS_VECTOR_DATA_REG_128 register is very similathi®s VAP_TCL_VECTOR_DATA_REG, but
allows 128bit writes into the vector memory. There may be some restrictions when writing to this register (i.e. enly 128
bit aligned, 12&it updates allowed).

The vertex shader instruction store increased from 256 # fbdZR5xx VS3.0.

To account for the increased shader instruction stioeeQffsets Used to get to the various memories (and elements of
memories) are as follows:

#define VERTEX_SHADER_CONST_VECS 256
#define VERTEX_SHADER_CODE_LINES 1024 RZ00256

#define PVS_CODE_START 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 63

AM Da Revision 12 February B, 2008

#define PVS_CONST_START 1024 // R30612
#define UCP_START_OFFSET 1536 // R300L024

#define POINT_VPORT_SCALE_OFFSET 1542 /R3001030
#define POINT_GEN_TEX_OFFSET 1543 // R300031

6.4.11 StateVector Engine State Data

The input vector state data required for TCL is listed in the table below. Each entry will consist of 4 single precision
IEEE floating-point vector values. Thentire StVe_Vector memory is accessed via an index/data register pair. When
updating multiple DWORDS through this path, the PM4 packet bit which preventiargmentation should be used so
that all words are written to the data register.

UCPO XYZW User clip plane 0 4 |EEE fp
UCP1 XYZW User clip plane 1 4 |IEEE fp
UCP5 XYZW User clip plane 5 4 |EEE fp
Point Sprite XYZW Viewport scaling parameters for Point Sprite Expansion in Clip Coq 4 IEEEfp
Viewport Scale /
Misc X = X-Radius Expansion

Y = Y-Radus Expansion
Z = State Size Multiply Constant

W = Culling Radius Expansion (SQRT(XRadExp *2 + YradExp 2

Point Tex Gen XYZW Texture values to apply to points when tex gen is on 4 |EEEfp
Corner Values
X = Lower Left Corner S/alue

Y = Lower Left Corner TValue
Z = Upper Right Corner-S¥alue
W = Upper Right Corner-Value

** These values may be updated using the

VAP_PVS VECTOR_DATA_REG or via the
GA_POINT_S0,T0,S1,T1 Registers. Note that updates using the
VAP_PVS VECTOR_DATA_ REG will not update the GA i&@grs.

VECTOR MEMORY DESCRIPTIONS

There are two vector memories.

The vertex shader instruction store increased from 256 to 1024 for R5xx VS3.0.

© 2008 Advanced Micro Devices, Inc.
Proprietary 64

AM Da Revision 12 February B, 2008

The PVS_CODE memory which will be 1024 entries deep and can operate as a ring (similar tosRiaeay)y
addressed using offsetsl023. Auteincrementing writes to this memory segment will awmt@ap back to 0 from
1023.

The PVS_CONST memory will be 256+8 entries deep. The first 256 entries of this memory will operate as a ring
(similar to R200R300), and are linearly addressed using offsets-163%. Auteincrementing writes to this
memory segment will autarrap back to 1024 from 1535.

The last 8 entries of this memory are used for Clipping data which currently includes thelip$&ianes Point

Sprite Viewport Scale vector, and Point Sprite Gen Tex Corner values. These entries will be updated starting at
address 1536 through 1543. Since the PVS_CONST wilharap at 1535 for constant updates, the UCP writes
must start with an indexpalate to 1536 or above. Adilacrementing writes will autevrap back to 1536 from 1542
(NOT 1543). This wraqaround probably will never be used, but, note that the-arapnd intentionally excludes

the Point Gen Tex vector since it is considered raséte.

These memories are not doubleffered in the code and constant range of addresses. For the code and const
memories, it is expected that the driver will insert a flush if the currently feaaed shader code or const overlaps

the immediately preeding shader code or const. Updates to the UCP / PS_VPORT_SCALE / Point Gen Tex values
are doublebuffered and therefore no flush is required.

6.4.12 Scalar Indx / Data Reqisters

These memories and registers no longer exist for R300. The only data in &tésrsthil relevant is the guard band
data which now resides in dedicated registers as described below.

6.4.13 VAP _GB VERT CLIP ADJ

The VAP_GB_* registers will only be singleuffered which means thahbAP_PVS STATE FLUSH REG
write must precede updates togbeegisters.

6.4.14 Programmable Vertex Shader Control Registers

The VAP_PVS_CNTL register allows control over which instructions in the PVS code store are executed with
respect to the current shader.

The VAP_PVS CONST_CNTL register allows control over whaddress ranges in the PVS const store (STVE)
are used with respect to the current shader.

6.4.15 Vertex Blending Control Register

The COLOR2_IS TEXTURE and COLOR3_IS TEXTURE bits enable the R5xx VAP VS3.0 to support 10 general
output vectors. For prB5xx, VAP supported 4 color vectors and 8 texture vectors to output to the pixel shader.
During new clip vertex generation, the color interpolation supported color clamping and flat shading and the texture
interpolation supported point texture coordinate generatnohcylindrical wrap. In order to create general output
vectors, color vectors required point texture coordinate generation and cylindrical wrap processing while texture
vectors required color clamping and flat shading.

© 2008 Advanced Micro Devices, Inc.
Proprietary 65

AM Da Revision 12 February B, 2008

6.4.16 Texture to Color Control Reqistar

The TEX_RGB_SHADE_FUNC_¢J), TEX_ALPHA SHADE_FUNC_(&7), and TEX RGBA CLAMP_ (&)

bits enable the R5xx VAP VS3.0 to support 10 general output vectors. FHabgxe VAP supported 4 colors and 8
textures to output to the pixel shader. During new dahifiex generation, the color interpolation supported color
clamping and flat shading and the texture interpolation supported point texture coordinate generation and cylindrical
wrap. In order to create general output vectors, color vectors requiredgximetcoordinate generation and

cylindrical wrap processing while texture vectors required color clamping and flat shading.

The TEX_RGB_SHADE_FUNC_J), TEX_ALPHA_SHADE_FUNC_(0r7), and TEX_RGBA_CLAMP_(&r)
bits enable the R5xx VAP VS3.0 to support cdigre interpolation during clipping on texture vectors. The bits
enable flat shading or color clamping selectively on all 8 texture vectors. These bits only support clipper
functionality of flat shading. The rasterizer has separate register bits te #atbhading at pixel interpolation.

6.4.17 VAP VTE CNTL

This register is used to control the functionality of the VAP Viewport Transform Engine.

6.4.18 GA COLOR CONTROL

This register is used by the clipper to control flat shading of all 4 colors and alphas badedeoprovoking
vertex.

6.4.19 GA ROUND MODE

This registespecifies the rouding mode for geometry & color SPFP to FP conversiomg the RGB and
ALPHA_CLAMP fields are used by VAP.

6.4.20 GA POINT SO0/T0/S1/T1

These registers are used to control the texturedawates for texture coordinate generation. These are only used by
VAP for point clipping

6.4.21 GB ENABLE

This register is used by VAP to control when and how point textures are generated for clipping.

6.4.22 SU TEX WRAP

This register is used by VAP when clippiimgorder to perform cylindrical wrap clipping calculations.

6.5 R3xx-R5xx Programmable Vertex ShadeiDescription

6.5.1 OVERVIEW
The R300 PVS model is a superset of the R200 PVS model. Differences are noted below.

R200->R300 Notable Shader Model Differences atdgnaDefinition Level

© 2008 Advanced Micro Devices, Inc.
Proprietary 66

AMDA1

Revision 12 February 3, 2008

NouhrwhE

Constant Store Size Increase from 192 to 256

Code Store Size Increase from 128 to 256

Ability to increase Input Size from 16 to 32 vectpes-vertex

Ability to increase Temp Register Size from 12 to 32 veepa@rvertex

Increase suppt from 6 Output Textures to 8

Increase support from 2 Output Colors to % ¢dlor only used for Bided lighting)
Ability to perform flow control instructions of jump, loop and subroutine

R200>R300 Notable Shader Model Differences at Driver Compitatievel

The R5xx VS3.0 PVS model is a superset of the R300 PVS VS2.0 model. Differences are noted below:

The programmable vertex shader (PVS) is a model which replaces the standard DirectXer@fgirocessing
pipeline. It replaces only the peertex operations (i.e. transformation, ligigj texture coordinate generation,

1.

©CoNOO AW

1.

Noohkwn

Requirement to Manage NUM_SLOTS & NUM_CONTROLLERS based on Input, Output

and Temp Register sizes relative to the respective veptoreertex.
Requirement to fipacko output vectors
Discrete Fog resides in one of ColeB@lpha.

based

Addition of Alternate Temp Memory. Can be used as additional standard Temp Memory.
Addition of DuatOp Vector/Math Capability along with Alternate Temp Reg Memory

Ability to write back into Input Memory from Shader (For HOS Evaluation Shader)

Ability to use adress register with Input, Output, and Temp registers as src and dest

operands. There is not a current known use for this, but it was simple to add.

Ability to support dynamic flow control through the use of predication opcodes, predication bit,
predicated writes, and a nested false count maintained in a temporary memory location.
Ability to support predication register through predication opcodes, prenidat, and
predicated writes or use CONDITIONAL vector opcodes where sources are conditionally written
or conditionally selected.

Code store size increase from 256 to 1024.
Temporary memory size increase from 72 to 128 (supports 4 threads and 32pectorsad).
Input memory size increase from 72 to 128 (supports 4 threads and 32 vectors per thread).
Output memory size increase from 72 to 128.
Static control flow nested loops and subroutines (4 deep loops and 4 deep subroutines)
Ability to access inpt) temporary, and output memories with inner most loop index.
Added new loop repeat type where the fipant loop index is not loaded at loop initialization.
FLI is inherited from parent loop.

10. Added new source input modifier (absolute value).

11. Added newinstruction modifier saturate to clamp outputs between 0 and 1.

texture transform, fog), but does not replace any of the primitive operations (i.e. primitive assembly, clipping,
backface culling, &ided lighting. The functional model for the PVS HW is as shown in the followingadiragFor
R300, 2sided lighting is achieved by writing up to 4 output colors (both front and back color results) and allowing
the setup engine to select the appropriate color(s) based on the facedness of the triangle.

The general model of the PVS is thlitogperands are of a vector type (4 floating point values). When there are
scalar operations, generally they emit the scalar result on all 4 channels of the output vector.

The input vertex memory (IVM) represents the data which is provided omeepekbasis (i.e. position, normal,
color, etc). This vertex data does not have any semantic attachment from the perspective of the shader HW. All

© 2008 Advanced Micro Devices, Inc.

Proprietary

67

on

AM Da Revision 12 February B, 2008

vertex attributes are generighere is a total of 128 vectors of IVM memory where up to 32 vectors (16 is
typical) may be used per vertex. (See description of slot/controller dependencies below).

The constant state memory (CSM) represents the constant values which are used in the shader process (i.e rotation
matrices, light positions, etc). This data also hasemantic attachment from the perspective of the shader HW.
There are 256 vectors of constant memory available.

The temporary register memory (TRM) represents the intermediate storage of temporary values computed during the
shader processThere are a tdal of 128 vectors of TRM memory where up to 32 vectors (12 is typical) may be
used per vertex. (See description of slot/controller dependencies below).

The alternate temporary register memory (ATRM) was added to R300 to allow both a vector enginencgueclei

math engine operation to output unique results simultaneously. The ATRM can be used in the same manner as the
TRM for regular vector operations except there is only a single read port on the ATRM memory, thus only 1 unique
source operand of anstruction may come from ATRM memory. The ATRM memory is the only memory that the
math portion of a duaihath operation can writeThere are a total of 20 vectors of ATRM memory where up to

20 vectors (4 is typical) may be used per vertex. (See descrptiof slot/controller dependencies below). (See
description of dual math op for ATRM limitations).

There are 4 address registers arranged as a vector (A0.x,y,z,w) which are signed integer fixed point values. The
address registers can only be used asffaet to the address into the constant memory. The address registers are
loaded using a MOV instruction from any of the IVM, CSM, TRM or ATRM. This special MOV instruction will
perform a floating point to fixed point conversion of the selected sounterveThere are two separate MOV
instructions for unique float to fix conversion. One is a truncate to minus infinity (the floor() C function), the other
is a round and truncate to minus infinity (val + 0.5f, followed by floor() C function. The \atlamped between

the range of 256 and 255. When this value is added to the constant address of the current operation, the result is
tested for in the range of 0 to MAX_SHADER_CONST where MAX_SHADER_CONST is determined by the
driver as the maximum constizaddress provided by the shader declaration. If the resultant address is out of the
range 0 to MAX_SHADER_CONST, (0,0,0,0) is returned on the data path. Therebis@d@ress register select

for each source operand which is used to select betweemtlz,w components of the address register vector. Only
a single address register (component) may be used for CSM offsets across all of the source operands of a given
instruction. If the address registers are used for offsets to IVM, TRM, ATRM, or G\évk is no limitation on the
number of address registers which can be used.

The output vertex memory (OVM) represents the data that is computed or passed by the shader program. These
locations have semantics attached since they are passed througpping,cliewport transform, rasterization
process. The locations in the OVM are as follows:

PVS_OUT_POS The output x,y,z,w position. This output vector must be written to by all
shaders.

PVS _OUT_PT_SIZE The output scalar point sprite size modifier-cotnp only.
PVS OUT_CLR(83) The output r,g,b,a colors. Support for 4.
PVS OUT_TEX(Q7) The output s,t,r,q textures. Support for 8.

PVS_OUT_FOG The output scalar discrete fog.-cémponent only.

© 2008 Advanced Micro Devices, Inc.
Proprietary 68

AM Da Revision 12 February B, 2008

There are a total of 128 vectors of OUT memory. These valuase mapped based on the compression
described below. (See description of slot/controller dependencies below).

For R300, the driver must remap the shader output memo.!
vectors based on the OVFR istgr definition. For example, if the only attributes present in the OVFR are Pos,

Pt _Size, CIrl and Tex 2, then these values must be written to output ve8tomfh@ order of the vectors, when

present, is as listed above. Note that Fog does metdraassociated vector, it can be placed in any of cedor 0

alpha channel. There is a GB_SELECT.FOG_SELECT setting in the raster to control where fog comes from.

Operations are defined generally as

PVS OP DST_OP.write_mask SRC_OP_A.modifier =~ SRC_OP_Bnodifier
SRC_OP_C.modifier

Different PVS ops have differing numbers of source operands. The number of source operands for each instruction
is specified below with the function descriptions.

One strict limitation of the PVS model is that a singleragion may only use one unique address from the IVM,

CSM, or ATRM. One, Two, or Three addresses may be used from the TRM (although 3 unique addresses from the
TRM on a single instruction will take 2 cycles in the HW). More than one source operandlimayhd IVM,

CSM, or ATRM memory as long as they all access the same vector address.

Each source operand has a modifier which can be applied orcamponent basis. There are two basic types of

source operand modification, Swizzle and negation. Wiezke operation is performed first. For each component
X,¥,Z,W it is possible to define independently which component gets mapped to these components, including a 0.0 or
1.0 value. So for each component you can select from (X, Y, Z, W, 0.0, 1.0)wiRgllthe swizzle operation, it is
possible to specify a negation of the value on acpemponent basis.

The destination operand has a write mask which allows any or all of the vector components to be updated. This is
particularly useful when performirggalar output operations to pack the result into a single component of a vector
value (since the scalar results are generally emitted on all component channels).

6.5.2 SLOT AND CONTROLLER MANAGEMENT

For R5xx, the input memory size, the temporary memory simkttee output memory size have been increased from
72 to 128 vectors. As stated below, with larger memories, the PVS design can run more efficiently with more
NUM_SLOTS and more NUM_CNTRS.

The R300 PVS design has a degree of flexibility which allowsitiver to increase the effective pegrtex sizes of
the IVM, TRM, ATRM, and OVM memories at the expense of reduced performance. There are two variables in this
performance tradeoff for R300: (NOTE: a vertex group is 8 vertices per group for R5xx siec®iB8engines)

a. the number of slots (NUM_SLOTS): the max number of vertex groups that can
reside from the input of vertex data to the IVM to the output of vertex data
from the OVM, and

b. the number of controllers (NUM_CNTLRS): the max number of vertexggou
that are available for vector engine processing at any given time.

© 2008 Advanced Micro Devices, Inc.
Proprietary 69

AM Da Revision 12 February B, 2008

The IVM and OVM memory flexibility is affected by NUM_SLOTS, while the TRM and ATRM memory flexibility
is affected by the NUM_CNTLRS. In general, the higher the values for NUM_SLOT8EM_CNTLRS, the

more efficient (higher performance) the PVS engine will run. The values for NUM_SLOTS and NUM_CNTLRS
are restricted by the vectepervertex required for the active vertex shader program.

The equations for determining valid values thigse terms are as follows:

NUM_SLOTS <= MIN(10, IVM_SIZE / IVM_VEC_PER_VTX, OVM_SIZE /
OVM_VEC_PER_VTX)

Where IVM_SIZE = 128, OVM_SIZE =128 and IVM_VEC_PER_VTX and
OVM_VEC_PER_VTX are vertex shader dependent values.

NUM_CNTLRS <= MIN(5, TRM_SIZE / TRMVEC_PER_VTX, ATRM_SIZE /
ATRM_VEC_PER_VTX)

Where TRM_SIZE = 128, ATRM_SIZE = 20, and TRM_VEC_PER_VTX and
ATRM_VEC_PER_VTX are vertex shader dependent values.

Note that NUM_SLOTS and NUM_CNTLRS are permitted to be set too low, but there is a perforeaaite for
setting them lower.

Note that when changing NUM_SLOTS or NUM_CNTLRS, a flush of the PVS engine is required by writing the
VAP_PVS_STATE_FLUSH_REG.

6.5.3 VS3.0 DYNAMIC FLOW CONTROL USING R5xx PREDICATION LOGIC

VS3.0 dynamic flow control is implemented R5xx in a mannesimilarto R400 where vector engine operations

and math engine operations are used to manipulate a predication bit to mask writes to the temporary memory, the
output memory, the input memory, the alternate temporary memory, and tessadgfjister. The operations are
designed to use a temporary memory location as a stack counter to keep the count of false branches. For nested
if/felse/endif branches, the operations receive as input the stack counter as well as the boolean opliationrte
whether the predication bit is set and whether the stack counter is incremented or decremented. Within the
if/felse/endif construct, the ALU operations are predicated which kills the writes if the predication bit is not set.

A possible implemetation of nested if/else/endif constructs is as follows:

if(Ax==0){ TEMP.w = ME_PRED_SET_EQ AXXXX
if(Ay>0){ TEMP.w = VE_PRED_SET_GT_PUSH TEMP.000w, A.000y
B=C; B = C with pred_enable =1 and pred_sense =1
}else { TEMP.w = ME _PRED_SET_INV TEMP.000w
B =D; B =D with pred_enable =1 and pred_sense =1
} TEMP.w = ME_PRED_SET_POP TEMP.000w
}else { TEMP.w = ME_PRED_SET_INV TEMP.000w
If (Az>=0){ TEMP.w = VE_PRED_SET_GTE_PUSHTEMP.000w, A.000z
B=E; B=E wi thpred_enable =1 and pred_sense =1
}else { TEMP.w = ME_PRED_SET_INV TEMP.000w
B=F; B =F with pred_enable = 1 and pred_sense =1
} TEMP.w = ME_PRED_SET_POP TEMP.000w
} TEMP.w = ME_PRED_SET_POP TEMP.000w

Firstif bes e ht amieMEt FRED S8ETnEQ, ME_ PRED_SET GT, ME_PRED_SET_GTE, or
ME_PRED_SET_NEQ depending on the boolean expression.

© 2008 Advanced Micro Devices, Inc.
Proprietary 70

AM Da Revision 12 February B, 2008

the predication bit and false branch counter to 0 or 1 depending on the resub@bléen expression. Second

| evel or deeper fAlfo statements turn in to VE_PRED_SET.
VE_PRED_SET_GTE_PUSH, or VE_PRED_SET_NEQ_PUSH. These |
counter as an additional input to determinefthal status of the predication bit and the output false branch counter.

For these Al fd statements, the predication bit wil!/l on|
expression is true. i El s e o Vswhiehtalsomenuire the false branchicouttes asME _ P R
an input and only set the predication bit if this counter is 1. If the input false branch counter is 0, the

ME_PRED_SET_INV sets the output false branch counter to 1 for later nesting and resets ¢a&qordui.

AEndi fo statements turn into ME_PRED_SET_POP, which de
negative.

The ME_PRED_SET_CLR and ME_PRED_SET_RESTORE operations can be used for loop break statements.
The ME_PRED_SET_CLR resets thegication bit and outputs maximum float to set the false branch counter to
an extremely high number to disable successive operations in a breaked loop. The ME_PRED_SET_RESTORE
operation can be used to restore the predication bit and the false branehn aftenexiting a breaked loop.

In the R300 architecture, the best performance is achieved by trying to interlace computations so that an operations
source is not the destination of the preceding operation. In the above example, the false brarminstackared

in TEMP.w is a very popular source and destination operand, and R5xx performance would be better optimized by
finding other operations to interlace between them.

6.5.4 VS3.0 PREDICATION AND SIMPLE DYNAMIC FLOW CONTROL USING R5xx CONDITIONAL
OPCODES

In a manner similar to R400, R5xx has conditional moves, writes, or muxes to support VS3.0 predication and simple
dynamic flow control. For predication support in VS3.0, a temporary memory vector can be used in place of a
predication bit. VE_COND_WRIE_EQ, VE_COND_WRITE_GT, VE_COND_WRITE_GTE, and
VE_COND_WRITE_NEQ have two input vector source operands where the first source operand is a conditional
component write mask for the writing of the second source vector into the destination vector. An exM881€
predication being supported with a conditional move or write is as follows:

P = pred_set_gt(A.xyzw,Bxyzw); TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);
(P) Cxyzw = Dxyzw; Cxyzw = VE_COND_WRITE_NEQ(TEMPxyzw,Dxyzw);
('P) Cxyzw = Exyzw; Cxyzw = VE_COND_WRITE_EQ(TEMPxyzw,Exyzw);

Conditional mux opcodes include VE_COND_MUX_EQ, VE_COND_MUX_GT, and VE_COND_MUX_GTE

have three input vector source operands where the first source operand is a component mux select selecting between
the second and ttd source vectors to write the destination vector. The above example can simplified to the

following:

TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);
Cxyzw = VE_COND_MUX_EQ(TEMPxyzw,Exyzw,Dxyzw);

The primary limitation of the conditional mux opcodes &t thnly two of the three source operands can come from
temporary memory since the temporary memory has only two read ports. A possible solution is using the input
memory as a temporary location for one of the three source operands (the input memonyriteeney the vector
and math engine). Also, VE_COND_MUX operations could be reverted into two VE_COND_WRITE
opcoderations as above.

© 2008 Advanced Micro Devices, Inc.
Proprietary 71

AM Da Revision 12 February B, 2008

6.5.5 PVS FLOW CONTROL CAPABILITY

R300 adds the DX9 support for Vertex Shader Flow control. There are 3 types of flow cmttuctions: JMP,
LOOP and JSR. Up to 16 total IMP, LOOP, and JSR instructions are allowed for any one shader program.

A JMP is a simple conditional JMP from one instruction to another instruction. Only forward jumps are allowed by
DX9. The hardwarés capable of backward jumps, but they are not recommended. There is not actually a
conditional jump in R300, if the Boolean jump bit is not set, the the driver should disable the JIMP.

A JSR instruction is a conditional Jump to Subroutine. SimilarediP, if the JSR Boolean control is disabled,

the driver should disable the JSR. Upon reaching the activation instruction, (the JSR), a jump is made to the
subroutine | abel (the jump address). T hrethaRbdnthe n st r uc t |
RET instruction is reached, it jumps back to the location specified in the VAP_PVS_FLOW_CNTL_ADDRS#

register.

A LOORP instruction allows a set of instructions to be executed multiple times. Upon reaching the loop start

instruction, the loogount is initialized and the fixedoint loop index register is initialized. The Loop End
instruction address is temporarily fiactivatedodo such t h:
decremented, the fixgooint loop index register is inemented (by inc_value) and it jumps back to the location

specified in the VAP_PVS_FLOW_CNTL_ADDRS# register. When loop count is decremented to 0, the

LOOP_END instruction is taken out of the temporarily activated list.

R5xx VS3.0 required the followinchanges to the PVS flow control capability:

1. Loops and subroutines can be nested up to four levels deep. The official definition is 4 levels of loops and
4 levels of subroutines. The actual R5xx implementation supports 8 total between loops and subroutines
(any combination not to exceed 8). Some special points with regard to loop and subroutine nesting:

o Only the innemmost fixedpoint loop index register is accessible for memory addressing.
0 The innermost fixedpoint loop index is visible within all ne=d subroutines.
0 The fixedpoint loop index is initialized for a loop on the activation address for the loop.

2. Rb5xx support VS3.0 capability for fixegoint loop index addressing for constant memory, input memory,
output memory and temporary memory. VS&Quires support for constant memory, input memory, and
output memory. Address clamping is only provided for constant memory, and therefore shader validation
should verify all fixedpoint loop index register addressing is within input, output, or tempbr@arndaries
for that vertex and loop.

3. R5xx supports VS3.0 capability for the loop repeat construct. The loop repeat is similar to a general loop
except the fixegboint loop index is not initialized at the activation of the loop. The loop repeat intherits
fixed-point loop index from the above nested loop. Though the init value is not used, the loop step value is
still used for the loop repeat. This enables the possibility for creative dual loop indexing of memories, but
the general VS3.0 functiongliwould set the step value to 0. Upon loop repeat completion, the original
fixed-point loop index is popped back to its goep repeat value. Loop repeats can be nested and use the
fixed-point loop index under a general loop.

4. R5xx VS3.0 supports 16 flo control instructions. VS3.0 treats flow control instructions in the same
manner as ALU instructions and therefore has a logical maximum of 512 flow control instructions if no
ALU instructions were used. However, the 16 R5xx flow control registerseediyg equate to
approximately 32 VS3.0 flow control instructions since an R5xx loop instruction includes the loop begin
and the loop end and a R5xx subroutine call includes the call, the subroutine start, and the subroutine
return.

*NOTE: When a loop couris set to 0, the driver must change the loop instruction to a jump instruction to jump
over the loop, since the control flow in the HW is done at the end of the loop.

Details on the language syntax are described below.

Caveats:

© 2008 Advanced Micro Devices, Inc.
Proprietary 72

AMDA1

Revision 12 February 3, 2008

When a loop count is chaed to 0, the driver must change this loop to be a jump to thefdiodp label.

Jump Instruction

jump b#, labelname;

b# is a boolean flow control constant register signified by "b" and "#" can range
from O to 15

labelnamemust be defined downstreamdaterminated with a ":"

There are 16 flow control constant registers of 1bit boolean type

Jumps are conditional (the jump will only occur if the value in the specified
boolean flow control constant is '1")

Example
mul

mad
jump b2, end;

mad
rcp

end:
mul
out

Subroutine Call Instruction

call

Pown

7.
8.

b#, labelname;

b# is a boolean flow control constant register signified by "b" and "#" can range
from O to 15

labelnamemust be defined downstream and terminated with a ":"

There are 16 flow control constant registers of 1bit boolean type

Subroutine calls are conditional (the call will only occur if the value in the
specified flow control constant is na@ero)

A subroutine block is defined as the code between the label reéererhen called
to the return from subroutine instruction

Loop instructions are allowed inside the subroutine block as long as the end of loop
label is also within the same subroutine block

Nested subroutines and loops are allowed to a depth of 8 total.

A parent fixedpoint index is visible through all subroutine nesting.

Example
call b5 normalize;

Return from Subroutine

© 2008 Advanced Micro Devices, Inc.

Proprietary

73

AMDA1

Revision 12 February 3, 2008

ret;
1. The "ret" instruction is used to indicate the end of a subroutine

Example

normalize:
dp3 r0.w, r0, r0;
rsq rO.w r0.w;
mul r0, r0, rO.w;
ret;

Loop Instruction

loop i#, labelname;

1.

2.

©®

i# is an integer flow control constant register signified by "i" and "#" can range from
Oto 15

The 'i' registeis comprised of three components itaop count (range 0 to 255), ii#.
initial value (range from 0 to 255), and i#.s step value (range fi@®to 127)

which when referenced as i# is an integer scalar defined by i# =n##.s wheren

is the number of times the loop has been traversed The loop value is clamped to be
in the rangei(25671 255) if it over/underflows.

For the "loop" instruction, only the first component (initial value) of the
is used and the i#.s step value is ignored and treated as '1'
labelnamemust be defined downstream and terminated aithi

The loop will be traversed i#.c times regardless of the i#.i and i#.s values

A zero value i#.c loop count is treated as??? so may not be supported (thendyiver
be required to preprocess this case to be a jump to thefdéndp label)

Jump insructions are allowed withia loop block as long as the jump target label is
also within the same loop block

Jump Subroutine instructions are allowed within a loop block

Nested subroutines and loops are allowed to a depth of 8 total.

i" register

Example

mul

mad

loop i13, endloop;
mad
mul

endloop:

mul

out

Loop Instruction With Auto -Increment

iloop i#, labelname;

1.

i# is an integer flow control constant register signified by "i" and "#" can range from

© 2008 Advanced Micro Devices, Inc.

Proprietary

74

AMDA1

Revision 12 February 3, 2008

Oto 15

2. The 'i' registeis comprised of threeomponents i#.toop count (range O to 255), i#.i
initial value (range from 0 to 255), and i#.s step value (range fi@&to 127)
which when referenced as i# is an integer scalar defined by i# =n##.s wheren
is the number of times the loop Haeen traversed The loop value is clamped to be
in the rangei(2567 255) if it over/underflows.
labelnamemust be defined downstream and terminated with a ":"

4. The loop will be traversed i#.c times regardless of the i#.i and i#.s values
A zero value i#.doop count is treated as??? so may not be supported (the driver may
be required to preprocess this case to be a jump to thefdodp label)

6. Jump instructions are allowed witham iloop block as long as the jump target label
is also within the sameadibp block

7. Jump Subroutine instructions are allowed within an iloop block

8. Nested subroutines and loops are allowed to a depth of 8 total.

9. With nested loops, only the innarost fixedpoint loop index is accessible for ALU
source operand addressing. Thaultasg address is not clamped for the input,
output, and temporary memories so shader validation is required to ensure all
addressing using the fixgabint loop index is within the boundaries for that vertex
and loop.

10. A loop repeat construct does not ialtze the fixedpoint loop index. The loop
repeat inherits the fixedoint loop index from the above nested loop. Though the
init value is not used, the loop step value is still used for the loop repeat. This
enables the possibility for creative duabpoindexing of memories, but the general
VS3.0 functionality would set the step value to 0. Upon loop repeat completion, the
original fixed-point loop index is popped to its pl@op repeat value.

Example

mul

mad

iloop i5, endloop;
mul
mad r0, r0, c[i5]; // faster to use loop counter than a0
add

endloop:

mul

out

6.5.6 DUAL MATH OP USAGE

The R300 PVS design enables the ability to use both the Vector Engine and the Math Engine on the same clock. An
instruction which combines a VectBngine and a Math Engine instruction will be termed a BMeth Instruction.
A Dual-Math Instruction has the following restrictions:

The Vector Instruction of a Dudllath Inst must not use more than 2 source operands because the Math Instruction
definition is stored in the3source operand bits of the instruction field.

© 2008 Advanced Micro Devices, Inc.

Proprietary

75

AM Da Revision 12 February B, 2008

The Math Instruction of a Dudllath Inst must have 2 or less source scalar operands which must both come from a
single source vector. Swizzles enable the two scalar operands to comanfy components of the single source
vector.

The Vector Instruction of a Dudllath Inst cannot have the destination operand use the ATRM memory.

The Math Instruction of a Dudlath Inst can only use the ATRM memory as the destination operand andlgan o
write to locations €8 and cannot use relative addressing (address register).

The combined instructions source operands must conform to the same memory restrictions as a single op (1 unique
src from CSM, IVM, ATRM, 2 unique src from TRM (3 unique fiam TRM only allowed for single op Vector
Macro inst)).

6.5.7 VECTOR INSTRUCTIONS
VE_DOT_PRODUCT: 2 VECTOR SOURCE OPERANDS

OUT.X = (IN_AX *IN_B.X) + (IN_A.Y *IN_B.Y)
+(IN_AZ*IN_B.Z) + (IN_AW * IN_B.W));

OUT.Y = OUT.Z = OUT.W = OUT.X

VE_MULTIP LY: 2 VECTOR SOURCE OPERANDS
OUT.X = IN_A.X * IN_B.X;
OUT.Y = IN_A.Y *IN_B.Y;
OUT.Z=IN_AZ*IN_B.Z
OUT.W = IN_AW * IN_B.W;

VE_ADD: 2 VECTOR SOURCE OPERANDS
OUT.X = IN_AX + IN_B.X;
OUT.Y =IN_AY +IN_B.Y;
OUT.Z=IN_AZ+IN_B.Z;
OUT.W = IN_AW+ IN_B.W;

VE_MULTIPLY_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE TEMPS)
OUT.X = (IN_AX *IN_B.X) + IN_C.X;
OUT.Y = (IN_A.Y *IN_B.Y) + IN_C.Y;
OUT.Z=(IN_AZ*IN_B.Z) +IN_C.Z;

OUT.W = (IN_AW * IN_B.W) + IN_C.W;

© 2008 Advanced Micro Devices, Inc.
Proprietary 76

AM Da Revision 12 February B, 2008

VE_DISTANCE_VECTOR: 2 VECTOR SOURCE OPERANDS
OUT.X =1.0;
OUT.Y = IN_AY *IN_B.Y;
OUT.Z=IN_A.Z,
OUT.W = IN_B.W,
Potentially wuseful as follows (XX = Donot
IN_A=(XX,D*D, D*D, XX)
IN._B = (XX, 1/D, XX, 1/D)
OUT = (1.0, D, D*D, 1/D) for lightattenuation multiply.
VE_FRACTION: 1 VECTOR SOURCE OPERAND
OUT.X = IN_A.Xi FLOOR(IN_A.X);
OUT.Y =IN_A.Y i FLOOR(IN_A.Y);
OUT.Z=IN_A.Zi FLOOR(IN_A.Z);
OUT.W = IN_AWi FLOOR(IN_A.W);

This function returns the positive difference between aifiggpoint number and the
largest integer number less than the floating point number.

VE_MAXIMUM: 2 VECTOR SOURCE OPERANDS
OUT.X = MAX(IN_A.X, IN_B.X);
OUT.Y = MAX(IN_A.Y, IN_B.Y);
OUT.Z = MAX(IN_A.Z, IN_B.Z);

OUT.W = MAX(IN_A.W, IN_B.W);

VE_MI NIMUM: 2 VECTOR SOURCE OPERANDS
OUT.X = MIN(IN_A.X, IN_B.X);
OUT.Y = MIN(IN_A.Y, IN_B.Y);

OUT.Z = MIN(IN_A.Z, IN_B.Z);

© 2008 Advanced Micro Devices, Inc.
Proprietary 77

Car e,

AM Da Revision 12 February B, 2008

OUT.W = MIN(IN_A.W, IN_B.W);

VE_SET_GREATER_THAN_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X >= IN_B.X) ? 1.0 : 0.0;
OUT.Y=(IN_A.Y >=IN_B.Y) ? 1.0 : 0.0;
OUT.Z=(IN_A.Z>=IN_B.Z) ? 1.0, 0.0;

OUT.W = (IN_AW >=IN_B.W) ? 1.0, 0.0;

VE_SET_LESS_THAN: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X < IN_B.X) ? 1.0, 0.0;
OUT.Y = (IN_A.Y < IN_B.Y) ? 1.0, 0.0;
OUT.Z = (IN_A.Z< IN_B.Z) ? 1.0, 0.0;
OUT.W = (IN_AW < IN_B.W) ? 1.0, 0.0;

VE_MULTIPLYX2_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE
TEMPS)

OUT.X = (2.0 * (IN_AX *IN_B.X)) + IN_C.X;
OUT.Y = (2.0 *(IN_A.Y *IN_B.Y)) + IN_C.Y;
OUT.Z=(2.0*(IN_A.Z*IN_B.Z))+ IN_C.Z;
OUT.W = (2.0 * (IN_AW * IN_B.W)) + IN_C.W;

VE_MULTIPLY_CLAMP: 3 VECTOR SOURCE OPERANDS (NO MACRO-> NO 3
UNIQUE TEMPS)

IF(C.W < (AW * B.W)) {
OUT.X = C.W;
} ELSE IF(C.X >= (A.X * B.X)) {
OUT.X =C.X;
} ELSE {

OUT.X=AX*B.X;

}

© 2008 Advanced Micro Devices, Inc.
Proprietary 78

AM Da Revision 12 February B, 2008

OUT.Y =0OUT.Z = OUT.W = OUT.X;

This function is used for point sprite clamping. May or may not be useful for other
functions.

VE_FLT2FIX_DX: 1 VECTOR SOURCE OPERAND
OUT.X = FLOOR(IN_A.X);
OUT.Y = FLOOR(IN_A.Y);
OUT.Z = FLOOR(IN_A.Z);

OUT.W = FLOOR(IN_A.W);

This function is a componemtise float to fixed conversion which returns the largest
integer less than the input value. This function is used to load the address register.

VE_FLT2FIX_DX_RND: 1 VECTOR SOURCE OPERAND
OUT.X = FLOOR(N_A.X + 0.5);
OUT.Y = FLOOR(IN_A.Y + 0.5);
OUT.Z = FLOOR(IN_A.Z + 0.5);

OUT.W = FLOOR(IN_A.W + 0.5);

This function is a componemtise float to fixed conversion which returns the nearest
integer to the input value. This function is used to load thecad register.

VE_PRED_SET_EQ PUSH: 2 VECTOR SOURCE OPERANDS
IF((IN_B.W==0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 1.0;

OUT.X=0UT.Y = OUT.Z = OUT.W,

VE_PRED_SET_GT_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W>0) && (IN_A.W==0)) {

© 2008 Advanced Micro Devices, Inc.

Proprietary 79

AM Da Revision 12 February B, 2008

PREDICATE_BIT = 1;
OUT.W =0;

} ELSE {
PREDICATE_BIT = 0;

OUT.W =IN_AW + 1.0;

OUT.X = OUT.Y = OUT.Z = OUT.W;
VE_PRED_SET_GTE_PUSH: 2 VECTOR S@RCE OPERANDS
IF((IN_B.W>=0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 1.0;

OUT.X = OUT.Y = OUT.Z = OUT.W;
VE_PRED_SET_NEQ PUSH: 2 VECTOR SOURCE OPERANDS
IF((IN_B.W!=0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 1.0;

OUT.X=0UT.Y = OUT.Z = OUT.W,
VE_COND_WRITE_EQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X==0) ? 1: 0;

© 2008 Advanced Micro Devices, Inc.
Proprietary 80

AMDH Revision 12

February 3, 2008

WRITE_ENABLE[1] = (IN_A.Y==0)? 1: 0;
WRITE_ENABLE[2] = (IN_A.Z==0) ? 1 : 0;
WRITE_ENABLE[3] = (IN_AW==0)?1:0;

OUT = IN_B;

VE_COND_WRITE_GT4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X>0)? 1: 0;
WRITE_ENABLE[1] = (IN_A.Y>0) ?1 : O;

WRITE_ENABLE[2] = (IN_A.Z>0)? 1: 0;
WRITE_ENABLE[3] = (IN_AW>0)?1:0;

OUT = IN_B;

VE_COND_WRITE_GTE4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X>=0)?1:0;
WRITE_ENABLE[1] = (IN_AY>=0)?1:0;
WRITE_ENABLE[2] = (IN_AZ>=0)? 1: 0;
WRITE_ENABLE[3] = (IN_AW>=0)?1:0;

OUT = IN_B;

VE_COND_WRITE_NEQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X!=0) ? 1: 0;
WRITE_ENABLE[1] = (IN_A.Y!=0)? 1: 0;
WRITE_ENABLE[2] = (IN_A.ZI=0)?1: 0;
WRITE_ENABLE[3] = (IN_AW!=0)?1:0;

OUT = IN_B;

VE_COND_MUX_EQ4 : 3 VECTOR SOURCE OPERANDS

/[only 2 unique input vectors can be from temporary storage
OUT.X = (IN_AX==0)?IN_B.X:IN_C.X;
OUT.Y = (IN_A.Y==0)?IN_B.Y:IN_C.Y;

OUT.Z=(IN_A.Z==0)?IN_B.Z:IN_C.Z;

© 2008 Advanced Micro Devices, Inc.

Proprietary

81

AM Da Revision 12 February B, 2008

OUT.W = (IN_AW==0)?IN_B.W:IN_C.W;
VE_COND_MUX_GT4: 3 VECTOR SOURCE OPERANDS
/[only 2 unique input vectors can be from temporary storage
OUT.X = (IN_AX>0)?IN_B.X:IN_C.X;
OUT.Y =(IN_A.Y>0) ? IN_B.Y : N_C.Y;
OUT.Z=(IN_AZ>0)?IN_B.Z:IN_C.Z;
OUT.W = (IN_AW>0)?IN_B.W:IN_C.W;
VE_COND_MUX_GTE4 : 3 VECTOR SOURCE OPERANDS
/I only 2 unique input vectors can be from temporary storage
OUT.X = (IN_AX>=0)?IN_B.X:IN_C.X;
OUT.Y = (IN_A.Y>=0)? IN_B.Y : IN_C.Y;
OUT.Z=(IN_AZ>=0)?IN_B.Z:IN_C.Z;
OUT.W = (IN_AW>=0)? IN_B.W: IN_C.W;
VE_SET_GREATER_THAN: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X>IN_B.X) ?1.0: 0.0;
OUT.Y = (IN_A.Y >IN_B.Y) ?1.0: 0.0;
OUT.Z=(IN.A.Z>IN_B.Z) ? 1.0, 0.0;
OUT.W = (IN_AW > IN_B.W) ? 1.0, 0.0;
VE_SET_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X == IN_B.X) ? 1.0 : 0.0;
OUT.Y = (IN_A.Y==IN_B.Y) 2 1.0: 0.0;
OUT.Z=(IN_A.Z==1IN_B.Z2) ? 1.0, 0.0;
OUT.W = (IN_A.W == IN_B.W)? 1.0, 0.0;
VE_SET_NOT_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_AX!=IN_B.X) ?1.0:0.0;
OUT.Y =(IN_A.Y I=IN_B.Y) ?1.0: 0.0;

OUT.Z=(IN_A.Z'=IN_B.Z) 2 1.0, 0.0;

© 2008 Advanced Micro Devices, Inc.

Proprietary 82

AM Da Revision 12 February B, 2008

OUT.W = (IN_A.W != IN_B.W) ? 1.0, 0.0;

NOTES
* A Vector Move Instruction an be accomplished via a VE_ADD with other source operand set to (0,0,0,0).

* A 3-Component Dot Product can be accomplished via a VE_DOT_PRODUCT "hitbrdponents forced to Q.0

6.5.8 SCALAR INSTRUCTIONS

The scalar (math) instructions have changed thempecands somewhat for R300. The general rules are as
follows:

1. Only w channels of src operands are available for math ops

2. For all 1 source operand instructions, the input is IN_A.W (except for ME_EXP_BASEE_FF
because of rule 3 below)

3. All source operandhich are powers (e”x, 2°x, xy, etc) will be on IN_C.W, all source operands
which are bases will be on IN_A.W and all sources which are clamps will be on IN_B.W. As long
as the compiler (driver) replicates the last valid src operand to all unused sodsy¢he
behavior looks clean as follows:

i. 1 source operand instructions (like e”x), the x would be in IN_C.W, but it can appear as
if in IN_A.W as long as this value is replicated

ii. 2 source operand instructions (like xy), the base is in the IN_A.W hanglow is in
IN_C.W, but it can appear as if in IN_B.W as long as this value is replicated.

All of the function definitions below are written with the assumption that the last valid source operand is replicated
to the Aunusedod s ournotalwaypuserthe salrse operafds gpecifled, sohetengs it relies on
the replication. These will be noted in comments below.

ME_EXP_BASE2_DX: 1 SCALAR SOURCE OPERAND
OUT.X = 2 A FLOOR(IN_A.W);

IF (IN_A.W > 128.0) {
OUT.Y = 0.0; //NOTE: THISS NOT EQUIV TO DX BEHAVIOR
} ELSE {

OUT.Y = FRAC(IN_A.W);

}
OUT.Z =2 " (IN_A.W);
OUT.W =1.0;
ME_LOG_BASE2_DX: 1 SCALAR SOURCE OPERAND

IF(IN_A.W == 0.0) {
OUT.X = MINUS_MAX_FLOAT;

© 2008 Advanced Micro Devices, Inc.
Proprietary 83

AM Da Revision 12 February B, 2008

OUT.Y =1.0;
OUT.Z = MINUS_MAX_FLOAT;
OUT.W = 1.0;

} ELSE {
OUT.X = Unbiased exponent of ABS(IN_A.W) as float(i.e. 4:@.0);
OUT.Y = mantissa of IN_A.W as float (1.0 <= OUT.Y < 2.0);
OUT.Z = LOG2(ABS(IN_A.W));
OUT.W =1.0;

}

ME_EXP_BASEE_FF:1 SCALAR SOURCE OPERAND

OUT.X=e " (IN_A.W); INOTE WASN_A.X FOR R200 *FROM C.W, IN_A.W if operand
replicate

OUT.Y = OUT.Z = OUT.W = OUT.X;

ME_LIGHT_COEFF_DX: 3 SCALAR SOURCE OPERANDS (NO MACRO -> NO 3 UNIQUE
TEMPS)

This function was a single vector source operand for R200. Now it uses 3 vecter goerands
(w components only).

The 3 operands may be the same vector using different swizzles to emulate R200 behavior.

OUT.X =1.0;
OUT.Y = MAX(IN_B.W, 0.0);
IF(IN_B.W > 0) {

IN_C.W = CLAMP(IN_C.W,-128.0, 128.0);

OUT.Z = (MAX(IN_A.W, 0.0)) IN_C.W;
} ELSE {
OUT.Z =0.0;

}
OUT.W = 1.0;

ME_POWER_FUNC_FF: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)

© 2008 Advanced Micro Devices, Inc.
Proprietary 84

AM Da Revision 12 February B, 2008

IF(IN_AW < 0.0) {

OUT.X =- (ABS(IN_A.W) N IN_B.W); //IN_B.W is from IN_C.W, but same if operand
replicate

} ELSE {
OUT.X =IN_AW ~IN_B.W,
}

OUT.Y = OUT.Z = OUT.W = OUT .X;

Special cases (in order of detection) are (using x*n notation):

0.0~n A Plus Infinity

0.0’n A 0.0

X~ 0.0A 1.0

InfA-nA 0.0

Inf An -> Inf

IF (x>1.0 and n ==Inf) A 0.0

IF (x <1.0 and n ==Inf) A Inf

IF (x >1.0 and n == Infp Inf

IF (x<1.0 and n == InfpA 0.0
ME_RECIP_DX: 1 SCALAR SOURCE OPERAND

OUT.X=1.0/IN_AW

OUT.Y = 0OUT.Z = OUT.W = OUT.X;

An input of 0.0 yields a result of MAX_FLOAT.
ME_RECIP_FF: 1 SCALAR SOURCE OPERAND

OUT.X=1.0/IN_AW

OUT.Y = 0OUT.Z = OUT.W = OUT.X;

An input of 0.0 yields a result of zero.
ME_RECIP_SQRT_DX: 1 SCALAR SOURCE OPERAND

OUT.X = 1.0 / SQRT(ABS(IN_A.W))

OUT.Y = 0OUT.Z = OUT.W = OUT.X;

© 2008 Advanced Micro Devices, Inc.
Proprietary 85

AM Da Revision 12 February B, 2008

An input of 0.0 yields a result ®1AX_FLOAT.
ME_RECIP_SQRT_FF: 1 SCALAR SOURCE OPERAND
OUT.X = 1.0 / SQRT(ABS(IN_A.W))
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of zero.
ME_MULTIPLY: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)
OUT.X=IN_AW *IN_B.W,
OUT.Y = OUT.Z = OUT.W = OUT.X;
ME_EXP_BASE2: 1 SCALAR SOURCE OPERAND
OUT.X = 2.0~ (IN_A.W); /*FROM C.W, IN_A.W if operand replicate
OUT.Y = OUT.Z = OUT.W = OUT.X;
ME_LOG_BASEZ2: 1 SCALAR SOURCE OPERAND
OUT.X = LOG2(ABS(IN_A.W));
OUT.Y = 0OUT.Z = OU.W = OUT.X;
An input of 0.0 yields a result of MINUS_MAX_FLOAT.
ME_POWER_FUNC_FF _CLAMP_B: 3 SCALAR SOURCE OPERANDS (NO MACRO)
IF (IN_AW <IN_B.W) {//IN_B.W is the clamp value.
OUT.X =0.0;
} ELSE {

SAME BEHAVIOR ASME_POWER_FUNC_FFWITH IN_A.W as base andN_C.W as
power (not IN_B.W)

}

OUT.Y = OUT.Z = OUT.W = OUT.X;

ME_POWER_FUNC_FF_CLAMP_B1: 3 SCALAR SOURCE OPERANDS (NO MACRO)
IF (IN_A.W < IN_B.W) {//IN_B.W is the clamp value.
OUT.X =0.0;

} ELSE IF (IN_AW > 1.0) {

© 2008 Advanced Micro Devices, Inc.
Proprietary 86

AM Da Revision 12 February B, 2008

OUT.X=1.0;
} ELSE {

SAME BEHAVIOR ASME_POWER_FUNC_FFWITH IN_A.W as base antN_C.W as
power (not IN_B.W)

}

OUT.Y =0OUT.Z = OUT.W = OUT.X;

ME_POWER_FUNC_FF_CLAMP_01: 2 SCALAR SOURCE OPERANDS
IF (IN_A.W <= 0.0) {
OUT.X = 0.0;
} ELSE IF (IN_AW > 1.0) {
OUT.X = 1.0;
} ELSE {
SAME BEHAVIOR ASME_POWER_FUNC_FF

}
OUT.Y =0OUT.Z = OUT.W = OUT.X;

ME_SIN: 1 SCALAR SOURCE OPERAND
OUT.X = SIN(IN_A.W);

OUT.Y = OUT.Z = OUT.W = OUT.X;
The hardware implementation of SIN/COS clamps the inpcitiding nans and infs, t@i to +pi
before computing the output, so for any inputs outside that range, cod(@nd sin(x) = 0. Except
for inputs of zero where sin(0) = 0, the minimum value that this function will output is +/
0x33800000. In othewords, the absolute value of the output is clamped to 0x33800000 minimum
except for sin(0) and sin(-pf).

ME_COS: 1 SCALAR SOURCE OPERAND
OUT.X = COS(IN_A.W);

OUT.Y = OUT.Z = OUT.W = OUT.X;
The hardware implementation of SIN/COS clamps the iripaitiding nans and infs, t@i to +pi
before computing the output, so for any inputs outside that range, cod(@nd sin(x) = 0. Except
for inputs of zero where sin(0) = 0, the minimum value that this function will output is +/
0x33800000. In othewords, the absolute value of the output is clamped to 0x33800000 minimum
except for sin(0) and sin(-pf).

ME_LOG_BASE?2_|EEE: 1 SCALAR SOURCE OPERAND

© 2008 Advanced Micro Devices, Inc.
Proprietary 87

AMDH Revision 12

February 3, 2008

OUT.X = LOG2(ABS(IN_A.W));
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of minuinity.

ME_RECIP_IEEE: 1 SCALAR SOURCE OPERAND
OUT.X=1.0/IN_AW

OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of infinity.
ME_RECIP_SQRT_IEEE: 1 SCALAR SOURCE OPERAND
OUT.X = 1.0/ SQRT(ABS(IN_A.W))
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of infinity.
ME_PRED_SET_EQ: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==0) {
PREDICATE_BIT =1,
OUT.X=0UT.Y =0UT.Z=0UT.W =0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X =OUT.Y =OUT.Z=0UT.W =1,
}
ME_PRED_SET_GT: 1 SCALAR SOURCE OPERAND
IF(IN_A.W > 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W =0;
} ELSE {
PREDICATE_BIT =0;

OUT.X=0UT.Y =0UT.Z=0UT.W =1;

© 2008 Advanced Micro Devices, Inc.
Proprietary

88

AMDH Revision 12

February 3, 2008

ME_PRED_SET_GTE: 1 SCALAR SOURCE OPERAND
IF(IN_A.W >= 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X = OUT.Y = OUT.Z = OUT.W = 1;
}
ME_PRED_SET_NEQ: 1 SCALAR SOURCE OPERAND
IF(IN_AW != 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X = OUT.Y = OUT.Z= OUT.W =1;
}
ME_PRED_SET CLR: 0 SCALAR SOURCE OPERANDS
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = MAX_FLOAT;
ME_PRED_SET_INV: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==1) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;
IF(IN_A.W==0) {

OUT.X =0UT.Y =0UT.Z=0UT.W = 1;

© 2008 Advanced Micro Devices, Inc.
Proprietary

89

AMDH Revision 12

February 3, 2008

} ELSE {

OUT.X=O0UT.Y =0UT.Z = OUT.W = IN_A.W;

}
ME_PRED_SET_POP: 1 SCALAR SOURCE OPERAND
OUT.W = IN_AWi 1.0;
IF(OUT.W < 0) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;
}
OUT.X = OUT.Y = OUT.Z = OUT.W;
ME_PRED_SET_RESTORE: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;

OUT.X =0OUT.Y = OUT.Z=0OUT.W = IN_A.W;

6.5.9 PVS INSTRUCTION DEFINITION

© 2008 Advanced Micro Devices, Inc.
Proprietary

90

AM Da Revision 12 February B, 2008

PVS INSTRUCTION
Description of PVS 128bit Instruction for Vector Memory

Field Name Bit(s) Description
PVS OP DST OPERAND 31:0 | Defines the opcode and destination operand.
PVS _SRC _OPERAND O 63:32 | Defines the first source operand for the instruction.
PVS _SRC_OPERAND_1 95:64 | Defines the first source operand for the instruction.
PVS _SRC_OPERAND_2 127:96 | Defines the first source operand for the instruction.

PVS Source Operand Description
Applies to PVS SRC OPERAND 0,1 & 2

Field Name Bit(s) Description
PVS _SRC REG _TYPE 1.0 Defines the Memory Select (Register Type) for the Source Operand. S
Below.
SPARE_O 2

w

PVS_SRC_ABS_XYZW If set, Take absolute value of all 4 components of input vector.
PVS_SRCADDR_MODE_O 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi2
ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative addressing using 10 register (loop index)

PVS SRC_OFFSET 12:5 | Vector Offsetinto selected memory (Register Type)

PVS_SRC _SWIZZLE_ X 15:13 | X-Component Swizzle Select. See Below

PVS _SRC_SWIZZLE Y 18:16 | Y-Component Swizzle Select. See Below

PVS_SRC _SWIZZLE 7 21:19 | Z-Component Swizzle Select. See Below

PVS_SRC_SWIZZLE W 24:22 | W-Conponent Swizzle Select. See Below

PVS_SRC_MODIFIER_X 25 If set, Negate X Component of input vector.

PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.

PVS_SRC_MODIFIER_zZ 27 If set, Negate Z Component of input vector.

PVS_SRC_MODIFIER_W 28 If set, Negate W Component of input vector.

PVS_SRC_ADDR_SEL 30:29 | When PVS_SRC_ADDR_MODE is set, this selects which component of
4-component address register to use.

PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O0 (Isb) to forabR

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using 10 register (loop index)

The memory selects (or register type) valid selections are as follows:

© 2008 Advanced Micro Devices, Inc.
Proprietary 91

AM Da Revision 12 February B, 2008

SOURCE REG_TYPES:
PVS SRC_REG_TEMPORARY =0; //Intermediate storage
PVS_SRC_REG_INPUT =1; /linput Vertex Storage
PVS SRC_REG_CONSTANT =2; //Constant State Storage
PVS SRC REG_ALT _TEMPORARY = 3; //Alternate Intermediate Storage

The valid swizle selects are as follows:

PVS SRC SELECT X =0; //Select X Component
PVS _SRC_SELECT_Y =1; //Select Y Component
PVS_SRC_SELECT Z =2; /ISelect Z Component
PVS SRC SELECT W = 3; //Select W Component

PVS SRC _SELECT_FORCE_0=4; //[Force Compant to 0.0

PVS SRC_SELECT_FORCE_1=15; //[Force Componentto 1.0

For R5xx VS3.0, the PVS_SRC_ABS_XYZW bits enables the absolute value for the four components of the source
vector.

© 2008 Advanced Micro Devices, Inc.
Proprietary 92

AM Du Revision 12 February B, 2008

PVS Opcode & Destination Operand Description

Field Name Bit(s) Description
PVS DST_OEODE 5.0 Selects the Operation which is to be performed.
PVS_DST_MATH_INST 6 Specifies a Math Engine Operation
PVS DST_MACRO_INST 7 Specifies a Macro Operation
PVS DST _REG _TYPE 11:8 | Defines the Memory Select (Register Type) for the Dest Operand.
PVS_DS_ADDR_MODE_1 12 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (Isb) to fornbi

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative addressing using 10 register (loop index)

PVS _DST_OFFSET 19:13 | Vector Offst into the Selected Memory

PVS_DST_WE_X 20 Write Enable for X Component

PVS DST WE_Y 21 Write Enable for Y Component

PVS DST WE _Z 22 Write Enable for Z Component

PVS_DST_WE_W 23 Write Enable for W Component

PVS _DST_VE_SAT 24 Vector engine operatios saturate clamped between 0 and 1 (all
components)

PVS DST_ME_SAT 25 Math engine operation is saturate clamped between 0 and 1 (all compor]

PVS_DST_PRED_ENABLE 26 Operation is predicatedOperation writes if predicate bit matches predica
sense.

PVS DST_PRED_SENSE 27 Operation predication sensdf set, operation writes if predicate bit is set.
reset, operation writes if predicate bit is reset.

PVS DST _DUAL _MATH_OP 28 Set to describe a duatath op.

PVS DST_ADDR_SEL 30:29 | When PVS_DST_ADDRMODE is set, this selects which component of ti
4-component address register to use.

PVS_DST_ADDR_MODE_O 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (Isb) to forab2

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO istgr

2 = Relative addressing using 10 register (loop index)

For R5xx VS3.0, the PVS_DST_VE_SAT and PVS_DST_ME_SAT bits enable aozene saturate clamp for all
four component of the output.

For R5xx VS3.0, the PVS_DST_PRED_ENABLE and PVS_DST_PRED_SENSE bits enable predicated writes for
the temporary memory, the output memory, the alternate temporary memory, the address regiseemjaumid t

memory. The PVS_DST_PRED_ENABLE enables the feature while PVS_DST_PRED_SENSE determines the
polarity of the predication bit for the write to be enabled. When the predication bit matches the predication sense,
the predicated write is enabledorFual vector/math engine operations, both operations are predicated.

The PVS_DST_MACRO_INST bit was meant to be used for MACROS such as awettor multiply, but
currently is only set for the following cases:

© 2008 Advanced Micro Devices, Inc.
Proprietary 93

AM Da Revision 12 February B, 2008

1 AVE_MULTIPLY_ADD or VE_MULTIPLYX2_ADD instruction with all 3 source operands using
uniqgue PVS_REG_TEMPORARY vector addresses. Since R300 only has two read ports on the temporary
memory, this special case of these instructions is broken up (by the HW) into 2 operations.

1 When the MACRO enable L set, the opcode (lower 6 bits is remapped as follows:
PVS_MACRO_OP _2CLK_MADD =0
PVS_MACRO_OP_2CLK_M2X ADD =1

The PVS_DST_MATH_INST is used to identify whether the instruction is a Vector Engine instruction or a Math
Engine instruction.

The PVS_[BT_OPCODE values are listed below:

VECTOR_NO_OP =0
VE_DOT_PRODUCT =1
VE_MULTIPLY =2
VE_ADD =3
VE_MULTIPLY_ADD =4
VE_DISTANCE_VECTOR =5
VE_FRACTION =6
VE_MAXIMUM =7
VE_MINIMUM =8
VE_SET_GREATER_THAN_EQUAL =9
VE_SET_LESS_THAN =10
VE_MULTIPLYX2_ADD =11
VE_MULTIPLY_CLAMP =12
VE_FLT2FIX_DX =13
VE_FLT2FIX_DX_RND =14
/I NEW R5xx OPCODES below
VE_PRED_SET_EQ_PUSH =15
VE_PRED_SET_GT_PUSH =16
VE_PRED_SET_GTE_PUSH =17
VE_PRED_SET_NEQ_PUSH =18
VE_COND_WRITE_EQ =19
VE_COND_WRITE_GT =20
VE_COND_WRITE_GTE =21
VE_COND_WRITE_NEQ =22
VE_COND_MUX_EQ =23
VE_COND_MUX_GT =24
VE_COND_MUX_GTE =25
VE_SET_GREATER_THAN =26
VE_SET_EQUAL =27
VE_SET_NOT_EQUAL =28
MATH_NO_OP =0
ME_EXP_BASE2_DX =1
ME_LOG_BASE2_DX =2
ME_EXP_BASEE_FF =3
ME_LIGHT_COEFF_DX =4
ME_POWER_FUNC_FF =5
ME_RECIP_DX =6

© 2008 Advanced Micro Devices, Inc.
Proprietary 94

AM Da Revision 12 February B, 2008

ME_RECIP_FF =7
ME_RECIP_SQRT_DX =8
ME_RECIP_SQRT_FF =9
ME_MULTIPLY =10
ME_EXP_BASE2_FULL_DX =11
ME_LOG_BASE2_FULL_DX =12

ME_POWER_FUNC_FF_CLAMP_B= 13
ME_POWER_FUNC_FF_CLAMP_B% 14
ME_POWER_FUNC_FF_CLAMP_0% 15

ME_SIN =16
ME_COS =17
/I NEW R5xx OPCODES below

ME_LOG_BASE2_IEEE =18
ME_RECIP_IEEE =19
ME_RECIP_SQRT_IEEE =20
ME_PRED_SET_EQ =21
ME_PRED_SET_GT =22
ME_PRED_SET_GTE =23
ME_PRED_SET_NEQ =24
ME_PRED_SET CLR =25
ME_PRED_SET_INV =26
ME_PRED_SET_POP =27
ME_PRED_SET_RESTORE =28

DEST REG_TYPES:

PVS_DST_REG_TEMPORARY = 0; /lintermediate storage

PVS DST_REG_AO =1; //Address Register Storage
PVS_DST_REG_OUT = 2; //Output Memory. Used for all outputs

PVS DST_REG_OUT_REPL_ X = 3; //Output Memory & Replicate X to all channels

PVS DST_REG_ALT_TEMPORARY =4, //Alternate htermediate Storage

PVS_DST_REG_INPUT =5; //Output Memory & Replicate X to all channels

The PVS_REG_AO may only be used as the destination operand register type when using the VE_FLT2FIX_DX or
the VE_FLT2FIX_DX_RND opcodes.

For R300, P\6_REG_OUT_*is replaced by the single PVS_REG_OUT and the PVS_DST_OFFSET field will be
used to place data in the appropriate vectors. This allows the PVS Output Vertex memories to be variable format for
the variable vertex methodology. The PVS_REG_OUTPRK is equivalent to PVS_REG_OUT except that it

forces the X channel to be replicated onto all 4 output channels. This capability is used to allow the mapping of
PointSprite and Discrete Fog to any output memory channel from an instruction with a yalqaenel output.

The PVS_DST_DUAL_MATH_OP bit must be set when combining Vector and Math Engine operations.

The PVS_DST_ADDR_MODE and DST_ADDR_SEL are the same as the SRC operand definitions.

© 2008 Advanced Micro Devices, Inc.
Proprietary 95

AMDA1

Revision 12 February 3, 2008

Dual Math Instruction (Replaces PVS SRC OPERAND 2)

Field Name Bit(s) Description
PVS SRC REG TYPE 1:0 Defines the Memory Select (Register Type) for the Souper&hd. See
Below.
PVS DST_OPCODE_MSB 2 Math Opcode MSB for Dual Math Inst.
PVS _SRC_ABS XYZW 3 If set, Take absolute value of both components of Dual Math input vectq
PVS_SRC_ADDR_MODE_0 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi
ADDR_MODE as follows:
0 = Absolute addressing
1 = Relative addressing using AO register
2 = Relative addressing using 10 register (loop index)
PVS_SRC_OFFSET 12:5 | Vector Offset into selected memory (Register Type)
PVS_SRC _SWIZZLE X 15:13 | X-Component Svzzle Select. See Below
PVS_SRC SWIZZLE_Y 18:16 | Y-Component Swizzle Select. See Below
DUAL_MATH_DST_OFFSET 20:19 | Selects Dest Address ATRM3Ifor Math Inst.
PVS _DST_OPCODE 24:21 | Math Opcode for Dual Math Inst.
PVS_SRC_MODIFIER_X 25 If set, Negate X Cmponent of input vector.
PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.
PVS_DST _WE_SEL 28:27 | Encoded Write Enable for Dual Math Op Inst (0=X,1=Y,2=2,3=W
PVS_SRC_ADDR_SEL 30:29 | When PVS_SRC_ADDR_MODE is set, this selectsclitomponent of the
4-component address register to use.
PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative addressingsing 10 register (loop index)

The PVS_DST_OPCODE_MSB is the most significant bit of the &I _OPCODE field to be used for the math
engine for dual ops. This enables math engine operations 16 through 28 to be used during dual ops.

For R5xx VS3.0, a PVS_SRC_ABS_XYZW bits enables the absolute value for the two components of the dual op

math engne source vector.

6.6 Setting-Up and Starting the VAP

The following method of programming is required in order to get the VAP to run.

The format and storage method for vertex data must be conveyed to the VAP by loading the set of Address and
Attribute registers for # Multiple Arrays of Structures paradigm. The Vertex Format register also must be loaded.

After all of the registers have been-sgt the VAP is started by a single write to the Vertex Fetcher Control

Regi ster

(VE_CNTL) .

Thiid irag irsdt,erori sitgdiggetrdw bregamstfer

causing the VAP to begin running. A single primitive or a group of primitives can be processed as a result of the
single trigger; the exact number of primitives being controlled by thMINVERTICES field of the Vertex Fetcher

Control Register.

Depending on the daféow configuration of the VAP (controlled by the VTX_AMODE and VTX_LOCN fields of

© 2008 Advanced Micro Devices, Inc.
Proprietary

96

AM Da Revision 12 February B, 2008

the Vertex Control Register), the VAP may expect an extemtitl (the host, or Command Processto deliver

data for the current operatiorit is the responsibility of the exterrattity to perform the exact numbef register

writesin accordance with the value set in the NUM_VERTICES fieldeowise the VAP will hang. For Index

data, the host must write to any dword in the PORT _IDX range; and for parameter data, the host must write to any
dword in the PORT_DATA range.

Once the VAP has completed processing the number of vertices specifiedNM_VERTICES field, it goes
back to an idle state, waiting for another trigger.

6.7 Methods of Passing Vertex Data

There are three parameters that characterize the passing of vertex data for 3D primitives to the Graphics Controller.

1) Location: Embedded vs. ¶te.
In Embedded mode, the vertex information is present directly in the command packet.
In Separate Mode, the command packet contains a pointer to another memory area containing the
vertex information.

2) Addressing Mode:Immediate vs. Indexed.
The verta information can be expressed as either the vertex data itself (Immediate Mode), or a list of
indices into a buffer of vertices (Indexed Mode).

3) Format: Examples are: StructureOfArrays(SOA), ArrayOfStructures(AOS), Strided Vertex Format.
The format of thevertex data is conveyed to the Setup Engine via the flexible vertex format register, as
well as the address and attribute registers for the Multiple Array of Structures.

The Location and AddressifhgwMecode ffi igwAPdspeciipoygmvhaiotgok df th ke e
information will be flowing on the register backbone and on the memory backbone while the VAP is processing a
command packet.

© 2008 Advanced Micro Devices, Inc.
Proprietary 97

AM Da Revision 12 February B, 2008

7. Fragment Shaders

7.1 Introduction

This section describes the functional behavior of the Univ&tsadler®f on R5xx.

7.2 Instructions

There are 512 instruction slots. A program can begin execution at any address. In the absence ofdlpw cont
programs will increment the program counter after each instruction. The program counter wraps at 512
automatically, so it is valid to load shader programs which utilize the bottommost and topmost regions of the
instruction store.

Each instruction aabe one of four types:

US_INST_TYPE_ALU Arithmetic and Logic Unit instruction
US_INST_TYPE_OUTPUT Output instruction (with ALU functionality)
US_INST_TYPE_FC Flow Control instruction
US_INST_TYPE_TEX Texture instruction

ALU and OUTPUT instructionboth have full RGB and Alpha math functionality. The only functional difference
between them is that ALU instructions can set the predicate bits, and OUTPUT instructions can write to the output
registers. There is no way to do both in the same ingiructnternally, the sequencer must treat instructions that

have potential outputs specially for scheduling. The last executed instruction of the shader program must also be an
OUTPUT instruction, even if it's not outputting anything interesting.

The first OUTPUT instruction will reserve space in the output register fifo. This space is limited, therefore issuing
an OUTPUT earlier than necessary may cause threads to stall earlier than necessary. You should not set an ALU
instruction as type OUTPUT unleitgs actually writing to an output register, or it is the last instruction of the
program.

Flow control instructions and texture instructions each have their own interpretation of the bits in the instruction
word.

The active shader should reside in thege US_CODE_RANGE.CODE_ADDR to

US_CODE_RANGE.CODE_ADDR + US_CODE_RANGE.CODE_SIZE, inclusive (note that
US_CODE_RANGE.CODE_SIZE is the size of the shader program, minus one). You may setup additional shaders
in advance outside of this range, but the enirishader should not attempt to execute code outside of this range.

The shader has an offset, US_ CODE_OFFSET.OFFSET_ADDR, associated with it that is added to various
instruction addresses, minimizing the number of registers you may need to updateladatimgea shader. Each

pixel starts the shader at instruction US_CODE_ADDR.START_ADDR + US_CODE_OFFSET.OFFSET_ADDR
(instruction addresses are always modulo 512). Execution continues until the program counter reaches
US_CODE_SIZE.END_ADDR + US_CODE_OFFBBFFSET_ADDR. It does not matter how many pixels in

the group are active (even none), the program will end after that instruction is executed. The instruction at the end

© 2008 Advanced Micro Devices, Inc.
Proprietary 98

AM Da Revision 12 February B, 2008

address must be an OUTPUT instruction (even if the output mask is zero), andadivayklwait for the texture
unit semaphore by setting the TEX_SEM_WAIT bit (see below). At the time of termination, the contents of the
output registersra sent to the render targets.

Multiple shaders can be loaded into the instruction memory. Swittlgtvgeen them only requires changing global
registers like US_CODE_ADDR, US_CODE_RANGE, US_CODE_OFFSET, US_PIXSIZE, and US_FC_CTRL.

Updates to shader code outside the currently active program are safe, and do not stall the pipeline. If you intend to
overwite the active shader, however, the pixel shader pipe must be flushed so that pixels running the old shader get
out before the update. Register writes to US_CODE_ADDR, US_CODE_RANGE, US_CODE_OFFSET, and/or
US_PIXSIZE should flush the pixel shader pipe.

The US instruction and ALU constant registers cannot be written to directly, due to addressing limitations elsewhere
in the pipe. A vector mechanism is provided in the GA block for writing to the US registers. Details on writing the
US registers are praded toward the end of this document.

7.3 Instruction Words

US_INST_TYPE_ALU / US_INST_TYPE_OUTPUTB registerk
US_CMN_INST_*

US_ALU_RGB_ADDR_*

US_ALU_ALPHA_ADDR_*

US_ALU_RGB_INST *

US_ALU_ALPHA_INST_*

US_ALU_RGBA_INST_*

= =4 =4 =4 A -4

US_INST_TYPE_FC (3 registerk
T US_CMN_INST_*
1 US_FC_INST_*
1 US_FC_ADDR_*

US_INST_TYPE_TEX (4 registerk
T US_CMN_INST_*
T US_TEX_INST_*
1 US_TEX ADDR_*
1 US_TEX_ADDR_DXDY_*

The FC and TEX words overlap with the ALU/OUTPUT words in instruction mgm®he unused memory
locations for FC and TEX are ignored by UWlSey may bdeft uninitialized, or set to zero, with no ill effect.
However, the driveshould take care to write to all registers thia required by eadhstruction type.

Within US_CMN_INST_*, the fields effective for each instruction type are indicated by *s:

ALU OUTPUT FC TEX
TYPE * * * *
TEX_SEM_WAIT * * * *
RGB_PRED_SEL | * * * *
RGB_PRED_INV * * * *
ALPHA PRED_SEL| * * *
ALPHA _PRED_INV | * * *

© 2008 Advanced Micro Devices, Inc.
Proprietary 99

AM Da Revision 12 February B, 2008

WRITE_INACTIVE

LAST

NOP

RGB_WMASK

ALPHA WMASK

RGB_OMASK

ALPHA_OMASK

RGB_CLAMP

ALPHA_ CLAMP

ALU RESULT SEL

| k| k| k| k| k| k| *[*| *| *
k| k| k| w| k| k| H| *[*| *| *

ALU RESULT OP

ALU_WAIT * *

STAT WE * * x

7.3.1 Synchronization of instruction streams

The US allovg you to freely intermix instructions of multiple typdswill process the three types (ALU/Output,
Texture, and FC) iparallel whenever possible. Instructions need to be synchronizex an instruction of one
type depends on the output of anottygre. The cases where explicit synchronization may be required are:

1 TEX instruction dependent on ALU for source register or preditechronized with the ALU_WAIT
bit.

1 FCinstruction dependent on ALU for predicate or ALU res8ignchronized with the IBJ_WAIT bit.

1 ALU instruction dependent on TEX for lookup result. Synchronirgdg the texture semaphore.

A texture or FC instruction that uses a result computed by aAlrldrinstruction should set the ALU_WAIT bit.

This forces processirfgr the thead to stall until pending ALU instructions are compleidatency of about 30

cycles is imposed on the thread.

Note that a static FC instruction never needs to set ALU_WAIT simmvédr depends on a result computed within
the shader. Also, an AListructionnever needs to set ALU_WAIF dependencies amongst Alikktructions are
resolved internally.

The texture semaphore is used to synchronize the output of a testuoetion with a subsequent ALU or texture
instruction that uses thegsult. $nhce thelatency for a texture fetch is difficult to anticipate in advancetakture

semaphore mechanism is more complex than ALU_WAIT. The testumaphore is described in more detail
below.

7.4 ALU Instructions

An ALU instruction actually consists ain RGB vector instruction arah Alpha scalar instruction.

There are only a few operations that only one or the other unitozapute, but in each case there is a special
instruction the otheengine can use to copy the result.

7.4.1 Sources

© 2008 Advanced Micro Devices, Inc.
Proprietary 100

AM Da Revision 12 February B, 2008

Each instructin can specify the addresses for 6 different sotir8&8RGB vectors and 3 Alpha scalars. Each source
can either come from oraf 128 temporary registers (which can be modified during the shaudhe different for
each pixel), or from one of 256 constaegistergwhich can only be changed between geometry packets). In
addition, asource can be an inline constant. The loop variable (aL) may be &daleg combination of source
addresses, but may not be added tmkme constant.

Each color registr (temporary and constant) consists of@BponenRGB vector and a scalar Alpha value.

Inline constants are unsigned floatipgint values with 4 bits aéxponent (with bias 7) and 3 bits mantissa. Inline
constants represefihite values only- there is no representation for NaN or infinitinline constants can express
denormal values though. Also, the étttern 0x0 represents-20, rather than zero. Example valuessirewn
below:

EXPONENT MANTISSA
2710 0x0 0x0
279 0x0 0Ox1
27-8 0x0 0x2
207 0Ox1 0x4
27-6 0x7 0x0
1 Oxf 0x0
256 Oxf 0x0
480 Oxf 0x7

You can obtain negative inline constants and the value zero usiimpthenodifiers and swizzles, described below.

Each source is specified with three fields. Valid encodings oé fledds are shown below (for source 0, in this
example):

ADDRO[7] ADDRO[6:0] ADDRO_CONST | ADDRO REL
register N 0 N 0 0
register N + alL 0 N 0 1
constant N N /128 N % 128 1 0
constant N + aL N /128 N % 128 1 1
inline const X 1 X 0 0

Note that inine constants set the MSB of ADDRO and clear ADDRO_CONST.

7.4.2 Presubtract

Each RGB and Alpha instruction has a presubtract operation, whiclsalmesextra math on incoming data from
the first or from the first andecond sources. The available operatames

US_SRCP_OP_BIAS 17 2*srcO
US SRCP_OP_SUB srcl- srcO
US SRCP_OP_ADD srcl + srcO
US_SRCP_OP_INV 1-srcO

The RGB presubtract happens on all three components in paralleéNdieepresubtract is scalar.

© 2008 Advanced Micro Devices, Inc.
Proprietary 101

AM Da Revision 12 February B, 2008

If any presubtract result is used iretimstruction, and one ofdlsources being used in a presubtract is written in the
previous instruction, and the previous instruction is an ALU or output instruetid@P needs to be inserted

between the two instructions. Do this $stting the NOP figin the previous instruction, so the NOP does not

consume an instruction slot. This allows the HW the extra cycle necessary to resolve the dependencies involved in
doing this extra matfthere are additional cases where NOP may need to be set, note}ll belo

NOP is never required if the previous instruction is a texture lookup.

7.4.3 Inputs

Each math operation has zero to three inputs. Each input can be configured to select a source and swizzle its
channels. There are fieltts configure 6 inputs per insiction: 3 for RGB and 3 for Alpha. Ainstruction can read
in at most 12 independent colour component8@B components and 3 alpha components).

7.4.3.1 Select

Each input selects from srcO, srcl, src2, or the presubtract (ssaft’). One can conceive dfd selects
assembling a<¢omponenvector as seen below. The swizzle selects (see next section) detetmdhef the four
values are chosen to actually take part incthraputations.

{rgb_addre>r
srcO ={ rgh_addré>g

{rgb_addrG>b

{ alpha_addre>a

{rgb_addrt>r
srcl ={rgb_addri>g

{rgb_addrt>b

{ alpha_addri>a

{rgb_addr2>r
src2 ={ rgb_addr2>g

{rgb_addr2>b

{ alpha_addrz>a

{rgb_srcp_result. =rgb_srcp_op(rgb_addsr, rgb_addri>r)

srcp ={rgb_srcp_result.g =rgb_srcp_op(rgb_adeyOrgb_addri>g)
{rgb_srcp_result.b =rgb_srcp_op(rgb_addt) rgb_addri>b)
{ alpha_srcp_result.a = alpha_srcp_op(alpha_addr@lpha_addrita)

The RGB and alpha units each take three operands, A, B, and C. opeeards are selected with the RGB_SEL_x
and ALPHA_SEL_x fields. Not#hat src0, srcl and src2 are fetched from a combination of the RGpdrad
source addresse#f. the RGB unit swizzles in an alpha componé, alpha component will always come from
alpha_addr*. Similarly, ithe alpha unit swizzles in an RGB component, it will always come fgtimaddr*.

7.4.3.2 Swizzle

© 2008 Advanced Micro Devices, Inc.
Proprietary 102

AM Da Revision 12 February B, 2008

Each component of each input can specify dreegen values. Eacdomponent can select R, G, B, or A from the
selected source, or it cehoose 0, 0.5, or 1. The RGB unit has 3 components, so there arsvitrde select fields
per input. The Alpha unit only has 1 swizslgect per input.

The RGB unit always uses the RGB selectors (RGB_SEL_x) and, excemtdéarase noted below, the red
(RED_SWIZ_x), green (GREEN_SWIZ_Xx), abtle (BLUE_SWIZ_ x) swizzle selects. The alpha unit always uses
thealpha selectors (ALPHA_SEL_X) and the alpha (ALPHW/IZ X) swizzleselects.

DP4 is a special case in that it is an RGB operation which operatesamponents instead of 3. The fourth input

component is configuredith the Alpha's select (ALPHA_SEL_x) and swizzle (ALPHA_SWIZ_x). Tigithe only
case whee the Alpha's swizzle has an effect on the Ri®Bputation's input.

7.4.3.3 Input Modifier

Each input has a modifier applied to it. The modifier can be one of:

US_ IMOD_OFF No modification

US IMOD_NEG Negate

US IMOD_ABS Take absolute value

US IMOD_NAB Takenegative of absolute value

7.4.4 The Operation

Following are the possible math operations the ALU can perform.tifee inputs are denoted by A, B, and C.

US_OP_RGB_SOP/US_OP_ALPHA DP Get results from the other unit's unique ops. In the cq
of RGB_SOPthe result is replicated to all three
channels. RGB's unique ops all have scalar results, g
ALPHA_DP simply copies that scalar result to its alph
destination.

RGB_SORP is only valid if the alpha operation is a
transcendental operation: EX2, LN2, RCB@® SIN,
COS. ALPHA_DP is only valid if the RGB operation
a dot product: DP3, DP4, D2A.

US_OP_RGB_MAD /US_OP_ALPHA_MAD A*B+C
US_OP_RGB_MIN /US_OP_ALPHA_MIN A<B?A:B

Minimum of A and B.
US_OP_RGB_MAX/US_OP_ALPHA MAX A>=B?A:B

Maximum of A and B.
US_OP RGB CND/US OP_ALPHA CND C>05?A:B
US_OP_RGB_CMP /US_OP_ALPHA_CMP C>=07?A:B
US_OP_RGB_FRC/US_OP_ALPHA FRC A - floor(A)

floor(A) is the largest integer value less than or equal

A.
US_OP_RGB_MDH /US_OP_ALPHA MDH A*B+C

Where:

A is forced to topleft.srcO (source select and
swizzles ignored)

© 2008 Advanced Micro Devices, Inc.
Proprietary 103

AMDA1

Revision 12 February 3, 2008

C is forced to topright.srcO (source select and
swizzles ignored)

MDH operates on a quad of pixels at a time; A and C
will be the same value for each pixel witlirgquad, and
the result will also be the same if B is a constant valu

Used to computes change in horizontal direction
between neighboring pixels. For example, to get the
difference (topright.rQ topleft.r0)
set:

src0=r0 B=1
Note that input radifiers work on all three inputs.

If srcO is computed in the previous instruction, then a
NOP needs to be inserted between the two instructio
Do this by setting the NOP flag in the previous
instruction. This is not required if the previous
instructionis a texture lookup.

US_OP_RGB_MDV /US_OP_ALPHA_MDV

A*B+C
Where:

A is forced to topleft.srcO (source select and
swizzles ignored)

C is forced to bottomleft.srcO (source select and
swizzles ignored)

MDYV operates on a quad of pixels airag¢; A and C
will be the same value for each pixel within a quad, a
the result will also be the same if B is a constant valu

Used to computes change in vertical direction betweg
neighboring pixels. For example, to get the differenc
(bottomleft.rO- topleft.r0) set:

srcO=r0 B=1
Note that input modifiers work on all three inputs.

If src0 is computed in the previous instruction, then a
NOP needs to be inserted between the two instructio
Do this by setting the NOP flag in the previous
instruction. This is not required if the previous
instruction is a texture lookup.

US_OP_RGB_DP3

A.r*B.r+ A.g*B.g + A.b*B.b
Results are broadcast to all 3 channels.
Use US_OP_ALPHA_ DP to get result into Alpha.

US_OP_RGB_DP4

A.r*B.r + A.g*B.g + A.b*B.b + Aa*B.a

Results are broadcast to all 3 channels.

Use US_OP_ALPHA DP to get result into Alpha.
Note that ".a" actually comes from the alpha instructiq
swizzle and select (see the section on swizzle above

US_OP_RGB_D2A

ArB.rr+AgB.g+C.b
Results ardroadcast to all 3 channels.
Use US_OP_ALPHA DP to get result into Alpha.

US_OP_ALPHA_EX2

2MA

© 2008 Advanced Micro Devices, Inc.
Proprietary

104

AM Da Revision 12 February B, 2008

Use US OP_RGB_SOP to get result into RGB.

US OP_ALPHA LN2 log2(A)

Use US OP_RGB_SOP to get result into RGB.
US OP_ALPHA RCP 1/A

Use US OP_RGB_SOP to gesult into RGB.
US_OP_ALPHA RSQ 1/ squareRoot(A)

Use US_OP_RGB_SOP to get result into RGB.

Note that the SM3 specification defines reciprocal
square root as 1 / squareRoot(abs¢Ajhis can be
achieved by using the input modifier for A.

US_OP_ALPHA W\ sin(A * 2pi)
Use US OP_RGB_SOP to get result into RGB.
US_OP_ALPHA_COS cos(A * 2pi)

Use US OP_RGB_SOP to get result into RGB.

7.4.5 Instruction modifiers

Each instruction can have an output modifier applied to its result:

US_OMOD_U1 Multiply by 1
UusS avob_U2 Multiply by 2
UuS_OMOD_U4 Multiply by 4
UsS OMOD_ U8 Multiply by 8
UsS_OMOD_D2 Divide by 2
US_OMOD_D4 Divide by 4
US_OMOD_D8 Divide by 8
US_OMOD_DISABLED No modification

Each instruction can also be optionally clamped to the range OTthidhappens after the above output modifier.

7.4.5.1 Disabling the output modifier

The multiply/divide output modifiers all convert NaN values insiandardized NaN (0x7fffffff) and squash any
denormal values to plus minus zero. For most ALU operations this¢septable, however MOV instruction
needs to preserve the source exactly. Forybis,can disable the output modifier for the MIN, MAX, CMP and
CND instructions. With US_OMOD_DISABLED, the result is not modifiedlgtthe value is neither multigd
nor divided, and clamping is napplied.

This allows a MOV to be implemented using any of the followirggructions, with US_OMOD_DISABLED set:
MIN(src, src)
MAX(src, src)
CND(src, src, 0)
CMP(src, src, 0)

US_OMOD_DISABLED is not valid wittany other ALU operation.

© 2008 Advanced Micro Devices, Inc.
Proprietary 105

AM Da Revision 12 February B, 2008

7.4.6 Writemasks

There are a number of writemasks for each instruction:

RGB_WMASK 3 hits; write R,G,B to register destination.
ALPHA WMASK 1 bit; write A to register destination.
RGB_OMASK bits; write R,G,B to output or to prediesalits.
ALPHA OMASK 1 bit; write A to output or to predicate bits.
W_OMASK 1 bit; write A to W output.

WRITE_INACTIVE 1 bit; if set, ignores flow control pixel mask when

writing. Affects ALU and texture instructions. If in
doubt, this bit should be clesd.

STAT_WE 4 bits; Mask R,G,B,A to increment sigrount
performance counter.
RGB_PRED_SEL 3 bits; Sets one of six modes that specify which of the

predicate bit(s) to AND with the RGB writemask (and
output mask when applicable). One of:

NONE - no pralication

RGBA - normal predication

RRRR- replicate R predicate bit

GGGG- replicate G predicate bit

BBBB - replicate B predicate bit

AAAA -replicate A predicate bit

RGB_PRED_INV 1 bit; Inverts selected RGB predicate bit(s). Should b
zero if RGB_PRED_SEis set to NONE.

ALPHA PRED_SEL 3 bits; like RGB_PRED_SEL, but used to control
predication for the alpha unit's write mask.

ALPHA PRED_INV 1 bit; Inverts selected alpha unit predicate bit. Shoulg
zero if ALPHA_PRED_SEL is set to NONE.

IGNORE_UNCOVERED 1 bit; if set, excludes uncovered pixels (outside triang

or killed via TEXKILL) from TEX lookups and flow
control decisions. Affects texture and flow control
instructions. If in doubt, this bit should be cleared.

ALU_WMASK 1 bit; if set, update #nALU result. Similar to the
predicate write mask.

Flow control instructions only have one predicate select, using@® PRED_SEL and RGB_PRED_INV fields.
ALU/Output instructions can ughfferent predicate selects for the RGB (vector) computationtfagalpha (scalar)
computation. For texture instructions, the RGB reduit® the texture unit will be influenced by
RGB_PRED_SEL/RGB_PRED_IN\4nd the alpha result from the texture unit will be influenced by the
ALPHA_PRED_SEL/ALPHA_PRED_INYV fields.

7.4.7 Destination

The destination address refers to a temporary register. The loop variable (aL) may optionally be added to the address
before writing. Thepredicate select in RGB_PRED_SEL, RGB_PRED_INV, ALPHA_PRED_SEL, and
ALPHA_PRED_INV will be applied whewmriting to the destination.

© 2008 Advanced Micro Devices, Inc.
Proprietary 106

AM Da Revision 12 February B, 2008

7.4.8 Output

With OUTPUT instructions, the TARGET field indicates where the regutie instruction should be written.
When in cached write mode (tdefault mode), the following options are available:

US RNDR _TGT_A Write to render target A register
US RNDR _TGT B Write to render target B register
US RNDR TGT _C Write to render target C register
US RNDR _TGT D Write to render target D register

The US_OUT_FMT_* registers describe render targets A through DreBaés are stred and the final value is
sent out when the prograerminates. If a channel in an output target is written moredhe@, the final value
written is what will be sent out. The RGB aagha unit may write to different targets in the same instruction.

The output may be predicated using PRED_SEL and PRED_INV.

7.4.9 Setting Predicate Bits

Each instruction may optionally set one or more predicate bits. iAktductions (as opposed to OUTPUT
instructions) interpret the OMASHelds as a predicate writemaskhe TARGET field determines when $et the
bits associated with each channel:

US PRED OP_EQUAL Set when channel is zero

US PRED OP LESS Set when channel is negative
US PRED OP_GREATER EQUAL Set when channel is naregative
US PRED OP NOT_EQUAL Set wha channel is nozero

The enumeration's names are based on the assumption that theypnithiely used after a subtraction of two
values. That's not the onppssible use, of course. The RGB and alpha units may use difiemetibns to set the
predicate in the same instruction.

In order to achieve the remaining common comparisons, <= and zaargmply reverse the order of the values
being subtracted, or reverBeth signs, and use the >= and < operations respectively.

You can simultaneoushyrite to the predicate register and a temporagjster, and you can perform a predicated
temporary register write ifou are also writing the predicate register. However, the old wélie predicate will
only be applied to the temporary register'#eumask; it will not be applied to the predicate write mask. In other
words, if the predicate is 0x7, your temporary write mask is Oxfyand predicate write mask is Oxf, you will write
only RGB component® the temporary register, but you will write all 4 predicate bits.

If the instruction result is clamped, the comparison happens qositelamped result. If output modifier is
disabled, denormals mde compared- denormals are equivalent to zero.

7.4.10 ALU Result

Every instruction has an "ALUesult." In order to use it, an ALldstruction must write an ALU result, and a it must
be consumed bthe next flow control instruction. The ALU result is preserved aater ALU/texture

© 2008 Advanced Micro Devices, Inc.
Proprietary 107

AM Da Revision 12 February B, 2008

instructions that do not write a new ALU result, BUNOT preseved across flow control instructions; therefore the
ALU result must be consumed by the first flow control statement aftewititten.

The ALU result is a single bit. The channel source for the ALU resattlected by the ALU_RESULT_SEL field:

US_ALU_RESULT_SEL_RED
US_ALU_RESULT_SEL_ALPHA

How to interpret the floating point result to set the ALU result bspiscified by the ALU_RESULT_OP field,
which is similar to the interpretation of the TARGET field for setting the predicate bits:

US ALU RESUT OP_EQUAL Set when channel is zero

US ALU RESULT OP_LESS Set when channel is negative
US ALU RESULT OP_GREATER EQUAL Set when channel is naregative
US ALU RESULT _OP_NOT_EQUAL Set when channel is narero

The ALU instruction that updates the ALUstét must set the ALU_WMASKit.

If the instruction result is clamped, the comparison happens @otitelamped result. If output modifier is
disabled, denormals mdne compared- denormals are equivalent to zero.

7.5 Texture Instructions

Texture instuctions are simpler than ALU or flow control instructiof@xture instructions have one destination
temporary address, 1 tosBurce temporary addresses, a sampler ID, and an opcode andlmtspécifying how
to lookup the texture. Most texture canfrationis handled in the pesampler configuration.

As with ALU temporary addresses, the loop variable (aL) may be addey texture temporary address (source
and destination). Texture souragdresses allow arbitrary swizzles from RGBA to STRQainate spacegnd the
RGBA result from the texture unit may also be swizzled. Unlite ALU instructions, the texture swizzles cannot
be used to selecbnstant inputs (0, 0.5, 1). Texture source addresses always reatidrimmporary registers; the
cannot read from the constant bank.

Texture instructions feature a texture semaphore mechanism to synchronize texture lookup with instructions using
the result of the lookupSee below for more information.

You may choose to limit which channels akature lookup are writtehy using the write masks RGB_WMASK

and ALPHA_WMASK. These write masksay be predicated; the RGB results from the texture unit are predicated
with RGB_PRED_SEL and RGB_PRED_INV, while the alpha result from the texture unédieg@ied with

ALPHA PRED_SEL and ALPHA PRED_INV.

Texture instructions have an UNSCALED bit that to control whethetetktere coordinates are scaled by the
texture dimensions before lookum typical usage, this bit is cleared for normal texture loskupichsupply

coordinates in the range [0.0, 1.0], and set for texture lookbjh supply coordinates that are prescaled to the
texture dimensions.

7.5.1 Operations

There are currently fexture operations available.

© 2008 Advanced Micro Devices, Inc.
Proprietary 108

AM Da Revision 12 February B, 2008

US TEX INST_NOP Perform no operatiarThe source addresses are ignorg
and nothing is written to the destination address. A
texture NOP may acquire the texture semaphore, so
NOP can be used for synchronization purposes.

US_TEX INST_LOOKUP A standard texture lookup. Reads the coordinatems fr
SRC_ADDR and writes the results of the lookup to
DST_ADDR.

US_TEX INST KILL LT O Kill the pixel if any components in SRC_ADDR are le

than zero. Note that the source swizzles are ignored
this case; if you want to limit which channels are
examinedyou may use the write masks in
WMASK_RGB, WMASK_ALPHA, and/or predication
Nothing is written to the destination address, but the
coverage mask may be updated.

US_TEX INST_LOOKUP_PROJ Lookup a projected texture. Q is used for the project
divide.

US TEX INST _LOOKUP_LODBIAS Lookup a texture, biasing the LOD that is computed.

US_TEX_ INST_LOOKUP_LOD Lookup a texture, using the value specified in the Q
coordinate of the input as an explicit LOD value.

US_TEX_INST_LOOKUP_DXDY Lookup a texture, computirg LOD based on slopes

given. This is the only opcode that uses the DX_ADD
and DY_ADDR source addresses. These registers

contain the slope values the texture unit should use v
determining the slope.

7.5.2 Semaphore

The semaphore is used to synchronidure lookups with thegubsequent use in the shader program.

Each texture instruction has a bit, TEX_SEM_ACQUIRE, specifying whétebould hold the texture semaphore
until the lookedup data comeback and is written to the destination temporagister. All shadeinstructions have
another semaphore bit, TEX_SEM_WAIT, that specifilxether to wait on the semaphore so its (dependent) source
data is ugo date. You may take advantage of the texture semaphore to pedioors independent comptitans

while waiting on the texture operatitm complete.

Hardware disallows more than one ACQUIRE operation at a time, so §etolEX_SEM_ACQURE on a lookup
you must also s&iEX_SEM_WAIT for that instruction. WAIT has no cost if there areontseinding ACQUIRE
operations. For an instruction with TEX_SEM_WAdhd TEX_SEM_ACQUIRE both set, the wait happens first.

There is only one texture semaphore, however you may use it to pmtkiple texture lookups, as long as the
lookups are themselvesdgpendent.When a texture instruction sets TEX_SEM_ACQUIRE, the texiaie

ensures that that particular lookup, and all prior lookups, bargleted before releasing the semaphore. Therefore,
to protect severdexture lookups, you may set TEX_SEM_AUWRE only on the last textudeokup, and set
TEX_SEM_WAIT on the first instruction that uses anytleé results. This example illustrates the usage:

INSTRUCTION TEX_SEM_WAIT TEX_SEM_AQUIRE
0: r4 = TEXLD(SO, r1) 0 0
1: 15 = TEXLD(SL, r2) 0 0
2: r6 = TEXLD(s2, r3) 1 1

© 2008 Advanced Micro Devices, Inc.
Proprietary 109

AM Da Revision 12 February B, 2008

3: ri=r1+1 0
4. r2=r2+1 0
5: r3=r3+1 0
6: rd=r4+1 1

In the above example, note that instruction 2 waits for the semafohensure the semaphore is available before
acquiring it.

Remember that the last instrigct of the shader program must $&X_SEM_WAIT, to ensure that the texture unit
is ready to proceghe next quad. Itis invalid to terminate the shader while holti@gexture semaphofom a
texture lookup

7.6 Flow Control

Each flow control instru@n is essentially a conditional jumparious optional stack operations allow all the
different kinds otraditional flow control statements. In particular, flow contrsitructions allow branch statements
(if’else/endif blocks), loogtatements (withraoptional loop register, alL), and subroutine callptimizers may be
able to combine these basic types of instructiand, utilize more esoteric flow control modes.

HW supports two flow control modes, "partial” and "full”. Partial flomntrol mode eables twice as many

contexts as full mode, but partfédw control mode has a limited nesting depth of branch statementdpasdot
support loops or subroutine calls. Partial flow control meltsuld be used unless the program requires branch
statemats nestednore than 6 deep, or the program requires loops or subroutines fidfuttontrol mode is used,

then your shader must declare at leasttevoporary registers (the US_PIXSIZE.PIXSIZE field must be greater than
or equal to 1). The US_FC_CTRegister, described below, controls tiehaviour of all flow control statements in

a program including whethéo use partial or full flow control mode.

See the Fields section below for descriptions of fields that affegiitiye condition and the varisulow control
stacks. Following that atle values of those fields for the most common types of flow conpexiations.

7.6.1 Dynamic Flow Control

As the US is a SIMD engine, applying the same instruction to a grauiged$, dynamic flow control must be
implemented with pixel masks. Ifgxel wants to take a jump because it failed an IF condition, baeighbors in
the pixel group don't want to jump, the pixel mushisesked off for a time until that branch of the IF statement is
completed. Only if thpixels fail the IF condition would the program coungetually be changed. Conversely, if
some pixels don't want to jump tesabroutine, they must be masked off for the entire subroutine. Omiyé of

the pixels want to jump would the call be slépp A brealstatement within a loop masks off passing pixels until
the loop iscomplete, and the program counter is only changed if all pixels wannhjm

These pixel masks are organized into stacks so flow control blockbenagsted. The operatioos these stacks

are encoded in the flogontrol instructions as flags, instead of having one set of opeduehl hardwire the stack
behavior. This orthogonality allows for mazeeative control of the shader's behavior, and provides opportunity for
optimizations in shaders that use a lot of flow control.

Jump conditions can be based off of a boolean constant, the rethdtpEvious ALU operation, and/or a predicate
bit. Booleans areonstant across all pixels, so dynamic flow control is only aekiesth predicates and
conditionals (ALU result). Any ALU instructiocan specify whether to write the ALU result and what channel
suppliesthe data for the result. The ALU result is only valid until anofkigd instruction writes to the result, or a

© 2008 Advanced Micro Devices, Inc.
Proprietary 110

AMDA1

Revision 12 February 3, 2008

flow control instruction igncountered. The predicate bits can be set anywhere and are prasevgsdlow

control instructions, but there are only 4 of them.

Flow control predication cannot be perannel. One of the replicad@izzles must be used fpredication of flow
control instructions (albther types of instructions can be predicated per channel). délietrol instructions use the
RGB_PRED_SEL and RGB_PRED_INV fieldsdompute the predicate.

7.6.2 The Stacks, and Branch Counters

The HW maintais two separate stacks for flow control.

Address Stack

Purely an address stack. No other state is maintaineq
Popping the address stack overrides the instruction
address field of the flow control instruction. The addr¢
stack will only be modified if théow control

instruction decides to jump.

Loop Stack

Stores an internal iteration count, loop variable (aL),
a pixel mask per frame. The only way to access the
iteration count is with the LOOP/ENDLOOP and
REP/ENDREP operations. The only way to after aL
variable is with the LOOP/ENDLOOP ops. The only
way to read the alL variable is with relative addressing
The only way to alter the pixel mask is with the BREA
or CONTINUE instruction.

Each stack's size is dependent on whether the prograrpastial orfull flow control mode. Stack overflows and
underflows producendefined behaviour in the hardware. The stack sizes are:

PARTIAL FULL
Loop stack n/a 4
Address stack n/a 4

The loop stack is maintained in such a way that an inner RER Wllbcontinue to see the loop variable from an
outer LOOP block. NestddOOP blocks will shadow the loop variable. The loop variable ivalid if you are not

in at least one LOOP block.

In addition to the two stacks, hardware maintains an ActivaritaBranch Counter for each pixel that indicate
whether the pixel is activand, if it was disabled by a conditional statement (if, else), howdefaye it can be
reactivated. If the active bit is unset, the pixehactive and the branch countedicates the number of conditional
blocks we must exit before the pixel can be activated again.makamum value of this counter is dependent on
whether the program is artial or full flow control mode. The limits (which determine maximseife nesting

depth) are:

PARTIAL FULL
Branch counter 0.3 0..31
Maximum depth 4 32

© 2008 Advanced Micro Devices, Inc.

Proprietary

111

AM Da Revision 12 February B, 2008

The branch counter can be incremented and decremented directly tiyvangntrol instruction based on whether
the pixel agrees with tjamp decision.Manipulating the brancbounter may affect the actilst. Incrementing
the counter on an active pixel will disable fiigel by clearing the active bit, and set the branch counter to zero.
Decrementing the counter of an inactive pixel to a negative véllset the active hj reactivating the pixel. The
branch counteis ignored in hardware while the active bit is set.

Pixels disabled by looping statements (BREAKLOOP, BREAKREP GOBNTINUE) are also tracked with "loop
inactive" counters, howevenlike the branch countethe loop counters cannot be manipulad@ectly.

Since only conditional (if, else) and loop statements maintain gutieé masks, to call a function based on a
condition requires thehader to use the branch counters on CALL and RETURN so theagixel mask will be
updated on the conditional call. If you knaead of time that *all* calls to a particular subroutine will be
unconditional calls, you can omit the branch counter manipulatidhadrsubroutine's return and on any calls to that
subrouine. Thebenefit of this is unclear, unless you are nearing the upperdimttie branch counter.

Returns within dynamic branches and/or loops (nested in the subrarénedt supported. A return can be made
conditional (by incremenetinipe branch stck counter on stay), but the hardware does not supgiarhing within

other conditional blocks that might partially masklita branch is entirely static (based on a constant boolean), you
mayput a return within a branch (just get the branch coutgerementight). This cannot be done inside loops,
however.

7.6.3 Fields

7.6.3.1 Fields cortrolling conditions on the jump

JUMP_FUNC | 2x2x2 table indicating when to jump

Bit 0 = Jump when (lalu_result && !predicate && 'boolean).
Bit 1 = Jump when (lalu_result &8predicate && boolean).
Bit 2 = Jump when (lalu_result && predicate && 'boolean).
Bit 3 = Jump when (lalu_result && predicate && boolean).
Bit 4 = Jump when (‘alu_result && !predicate && 'boolean).
Bit 5 = Jump when (‘alu_result && !predicate &&oblean).
Bit 6 = Jump when (‘alu_result && predicate && 'boolean).
Bit 7 = Jump when (alu_result && predicate && boolean).

Common JUMP_FUNC values:

0x00 = Never jump

0xOf = Jump iff alu_result is false.

0x33 = Jump iff predicate is false.

0x55 = Jump iff boolean is false.

Oxaa = Jump iff boolean is true.

Oxcc = Jump iff predicate is true.

0xf0 = Jump iff alu_result is true.

Oxff = Always jump

JUMP_ANY How to treat partially passing groups of pixels
false = Don't jump unless all pixelsamt to jump.

© 2008 Advanced Micro Devices, Inc.
Proprietary 112

AM Da Revision 12 February B, 2008

true | = Jump if at least one active pixel wants to jump. |

When JUMP_ANY is false, the instruction behaves like a universahtifier, and will decide jump if there are no
active pixels.When JUMP_ANY is true, the instruction behaves likeegistentialquantifier, and will never decide
to jump if there are no actiyiixels. Looping statements may override the jump decision mattelpixels based
on the loop counter.

7.6.3.2 Fields contolling optional stack operation

OP Loop Stack Operations

US FC_OP_JUMP None

US_FC_OP_LOOP Initialize counter and aL, and push loop stack if stay
US_FC_OP_ENDLOOP Increment counter and alL if jump, else pop loop stac
US_FC_OP_REP Initialize counter, and push loop stack if stay
US_FC_OP_ENDREP Increment countef jump, else pop loop stack

US FC_OP_BREAKLOOP Pop loop stack if jump

US_FC_OP_BREAKREP Pop loop stack if jump

US FC OP_CONTINUE Disable pixels until end of current loop

You should use US_FC_OP_BREAKLOORP if the innermost looping constru@@®, and
US_FC_OP_BREAKREP if the innermost looping construct is REP.

A OP Address Stack Operations

US FC_A_OP_NONE = None

US_FC_A OP_POP = Pop address stack if jump (overrides JUMP_ADDR
given in instruction)

US FC_A OP_PUSH = Push address stack if jump

B_OPO Branch stack Operations if stay

US FC_B_OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by
amount in B_POP_CNT. Activate pixels which go
negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Decctivate pixels which disagree with the jump decisi
(by deciding to jump) and set their branch counter to

B_OP1 Branch stack Operations if jump

US_FC B OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by
amount in B_POPCNT. Activate pixels which go
negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Deactivate pixels which disagree with the jump decis
(by deciding not to jump) and set their branch counte
0.

B _POP_CNT Branch Stack PoZount

How much to decrement the branch counters by when appropriate B_OP* field says to decrement.

© 2008 Advanced Micro Devices, Inc.
Proprietary 113

AM Da Revision 12 February B, 2008

B ELSE Branch Stack Else
false = None
true = Activate pixels whose branch count is zero (pixels

deactivated by the innermost conditional block), and
deactivate all pixels that were active.

Special Cases:

1 When the iteration count is zero, LOOP/REP ignore JUMP_FUNC and jump.

1 When the iteration count is zero, ENDLOOP/ENDREP ignore JUMP_FUNG@mitjump.

1 Any pixels deactivated by B_ELSE "want to junmgtjardless oS UMP_FUNC.

1 Any pixels deactivated by a branching statement (if, else)iniibit a decision to jump by a BREAK or
CONTINUE statement.

1 Any pixels deactivated by a CONTINUE statement will inhibitegision to jump by a BREAK statement;
theywill not inhibit a decision to jump by another CONTINUE statement.

1 Pixels deactivated by other flow control are indifferent todéeision to jump by a BREAK or
CONTINUE statement.

7.6.3.3 Address Fields

BOOL ADDR Which of 32 constant booleans to use for jurapdition

INT_ADDR Which of 32 constant integers to use for loop initialization (the red channel is used fo
iteration count, green for aL initialization, and blue for aL increment)

JUMP_ADDR Which instruction to jump to if conditions pass

JUMP_GLOBAL Whether JUMP_ADDR is global, or if OFFSET_ADDR should be added to JUMP_A[

7.6.3.4 Global Configuration

FULL FC _EN Whether to enable full flow control support.
false = No loops or calls, limited branching. Better performance.
true = All flow control functiorality enabled.

7.6.4 Common Flow Control Statements

JUMP_FUNC[JUMP_ANY | OP A_OP [B_OPO [B_OP1 [B_POP_CNT [B_ELSE | JUMP_ADDR
IFb 0x55 0 JUMP NONE | NONE | NONE [0 0 ELSE+1
ELSE Oxff 0 JUMP NONE | NONE | NONE [0 0 ENDIF
ENDIF
IFp 0x33 0 JUMP NONE [INCR [INCR [0 0 ELSE+1
ELSE 0x00 0 JUMP NONE | NONE | DECR [1 1 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR | NONE | 1 0 0
IFc 0xOf 0 JUMP NONE [INCR _[INCR [0 0 ELSE+1
ELSE 0x00 0 JUMP NONE | NONE | DECR [1 1 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR | NONE [1 0 0
IFb [0x55 [0 [Jump [NONE [NONE [NONE [0 [0 | ENDIF

© 2008 Advanced Micro Devices, Inc.
Proprietary 114

AM Da Revision 12 February B, 2008

ENDIF | | | I | | | I I

IF p 0x33 0 JUMP NONE | INCR NONE 0 0 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR NONE | 1 0 0

IFc 0x0f 0 JUMP NONE | INCR NONE | O 0 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR NONE 1 0 0

LOOP 0x00 0 LOOP NONE | NONE | NONE | O 0 ENDLOOP+1
ENDLOOP Oxff 1 ENDLOOP NONE | NONE NONE 0 0 LOOP+1
REP 0x00 0 REP NONE | NONE NONE 0 0 ENDREP+1
ENDREP Oxff 1 ENDREP NONE | NONE | NONE | O 0 REP+1
BREAK Oxff 0 BREAK NONE | NONE DECR n 0 END+1
BREAK b Oxaa 0 BREAK NONE | NONE | DECR n 0 END+1
BREAK p Oxcc 0 BREAK NONE | NONE DECR n 0 END+1
BREAK ¢ 0xf0 0 BREAK NONE | NONE DECR n 0 END+1
CONTINUE | Oxff 0 CONTINUE | NONE | NONE DECR n 0 END
CONTINUE | Oxaa 0 CONTINUE | NONE | NONE DECR n 0 END

b

CONTINUE | Oxcc 0 CONTIUNE | NONE | NONE DECR n 0 END

p

CONTINUE | 0xfO 0 CONTINUE | NONE | NONE DECR n 0 END

c

CALL Oxff 1 JUMP PUSH | NONE INCR 0 0 Subroutine
CALL b Oxaa 1 JUMP PUSH | NONE INCR 0 0 Subroutine
CALL p Oxcc 1 JUMP PUSH | NONE | INCR 0 0 Subroutine
CALL c 0xf0 1 JUMP PUSH | NONE INCR 0 0 Subroutine
RETURN Oxff 0 JUMP POP NONE DECR 1 0 0

* n indicates how many branch stack frames the BREAK is inside vitikicurrent loop.
* Lines with no fields filled out indicate no FC instructiomiscessary in that spot.

7.6.5 Optimizations

Clearly, not all the possible combinations are exglaeove. Thélexibility of the flow control instruction allows
for more creativélow control operations, or (more likely) optimizations.

One of the easiest optimizations makes use of the B_POP_CNT to ecoespeutive ENDIF statements:

JUMP_FUNC [JUMP_ANY | OP A OP [B OP0O [B_OP1 [B POP_CNT [B_ELSE [JUMP_ADDR
IF ¢ 0x0f 0 JUMP NONE | INCR NONE |0 0 ENDIF_0+1
[€]
IF ¢ | oxof [0 [JUMP [NONE JINCR [NONE [O [0 | ENDIF_1+1
[€]
IF ¢ | oxof [0 [JUMP [NONE JINCR [NONE JO [0 | ENDIF_2+1
[e]
ENDIF 0x00 1 JUMP NONE | DECR [NONE [1 0 0
ENDIF 0x00 1 JUMP NONE | DECR [NONE [1 0 0
ENDIF 0x00 1 JUMP NONE | DECR | NONE |1 0 0
Becomes

JUMP_FUNC [JUMP_ANY | OP A OP [B OP0O [B_OP1 [B POP_CNT [B_ELSE [JUMP_ADDR
IF ¢ 0x0f 0 JUMP NONE [INCR NONE |0 0 ENDIF+1

© 2008 Advanced Micro Devices, Inc.
Proprietary 115

AM Da Revision 12 February B, 2008

[€]

IF c | oxof [0 [JuMP [NONE [INCR [DECR 1 [0 | ENDIF+1
[€]

IFc [oxOf [0 [JUMP [NONE [INCR [DECR [2 [0 | ENDIF+1
[€]

ENDIF

ENDIF

ENDIF 0x00 1 JUMP NONE | DECR | NONE |3 0 0

7.6.6 LAST Bit

The LAST bitin the US_CMN_INST instruction word allows shadettgtminate before reaching the address
indicated byUS_CODE_®E.END_ADDR. The LAST bit can be indicated for aingtruction type. Any active
pixel for an instruction of any typ@&C, ALU, OUTPUT or TEX) marked "last" will be considered "done"tfat
instruction and all future instructions that the shader neghtute for that thread. Future instructions may or may
not beexecuted, according to the hardware implementation.

In the R5xx hardware implementation, when all pixels are "donethiread and we hit an OUTPUT instruction
that is marked as "last" (amés a texture semaphore waitthis is required), we will stop thread, even if this

isn't the instruction specified by END_ADDRIso, pixels that are "done" behave the same as pixels considered
"inactive" when encountering flow control instructipnseaning thatode that would have been skipped over if all
pixels were "inactiveWwould also be skipped over if the only pixels marked as "active" alscemarked as "done."

7.7 Floating Point Issues

The US is designed to be compliant with the Shader M&dehich doesot officially support IEEE special values
(denormal, infinity, NaN)and allows for leniency in various corner cases.

The US strives to provide a more complete IEEE floating point implementation. US supports the {BEEE 32
floating pointformat, with 23 bitanantissa, 8 bits biased exponent (bias 127), and 1 bit sign. Thls®Supports
the special IEEE values (denormal, infinity, NaN), there are some important caveats in the implementation
which are notedbelow. There is no distction between an sNaN and a gNaN.

7.7.1 Deviations from |IEEE

The most pervasive caveat is that denormals are flushed to an appropriately signed zero throughout US. There is no
gradual underflow, andlentities are not preserved for denormal values. Thiseihpparenin comparison
operations where a denormal is treated as equivaleetto

Also pervasive, the internal rounding mode is not configurable amat isxact to the IEEE standard. It could best
be said that rounding lmndom; operations imd near US round with differing standards and ibfeasible to
specify a uniform rounding mode at this stagel@dign. Most ALU operations are accurate to within one bit on
eachinput; transcendental functions have larger tolerances.

The lack of sepable multiply and add instructions has consequenceswting and sign preservation; when
using MAD to perform only a multiply or addition, keep in mind that the other operation may inflilnenceesult
despite apparent identities. For example, thealsvinstructions to use for moving a value from one register to
another bothutilize MAD, either with the additive identity "0 * O + r1", or a combination of additive and
multiplicative identities, "rO * 1 + 0" .Neither these instructions will correcttppy-0.0, because the add=annot
generate0.0 except with two negative inputs. In this caseose accurate move instruction would be * 0 + r1".
(the ideal MOVinstruction is described below).

© 2008 Advanced Micro Devices, Inc.
Proprietary 116

AM Da Revision 12 February B, 2008

US only supports comparisons against zero (praditafLU result, andCMP) and +0.5 (CND), and this has
consequences for implementing@neral compare function with special values. It is tempting to implement a
general comparison between values A and B by subtractirrgshtts, but this will not havile desired effect for
special valuesin IEEE, an infinite value is equivalent to itself, but NaN is negrivalent to NaN. Yet (infinity
infinity) = (NaN - NaN) = NaN, andhe results are indistinguishable. The limited operator set furteplicates
issues, since (A > B) is not equivalent to (A <= B) wiegther input is NaN.

The behaviour for CMP and CND is described below. When using the predicate comparison operators, the
following hold for special values:

VALUE X<0 X>=0 X==0 X1=0
+0.0 0 1 1 0
-0.0 0 1 1 0
+Inf 0 1 0 1
-Inf 1 0 0 1
NaN 0 0 0 1

* Denormals compare as equivalent to zero. Note that the only delyaxmal may be involved in a comparison
for predicate/alu result i§the output modifier is disabled with US_OMOD_DISABD.

7.7.2 ALU Non-Transcendental Floating Point

Nontranscendental ALU operations maintain extra precision to represemutations where an intermediate result
exceeds IEEE's finite rang&or example, if a MAD generates a result outside the finite rdmgé)e output
modifier brings the value back into range, the ALU will generate a finite value, not infinity.

The ALU accepts denormal values, but denormals are flushed tqoreserving sign. It is possible for a
multiplicative output modifieto bring a denormal intermediate result into the normal range; ircéisis, the ALU
will generate a normal nonzero value.

The ALU MAD operation, which many ALU operations are based on, folkieusdard IEEE rules when handling
special input values, for example:

OPERATION RESULT NOTE

X * NaN NaN Xis any value
0.0 * Inf NaN

Inf * Inf Inf

Inf * -Inf -Inf

0.0*-0.0 -0.0

X + NaN NaN X is any value
Inf + -Inf NaN

Inf + Inf Inf

Inf +-1.0 Inf

0.0 +-0.0 0.0

-0.0 +-0.0 -0.0

Dot products may ke precision in cases where the values to be aditfedgreatly in magnitude. For example, if
the two largest valugs be added cancel exactly, and the dargest value has a magnitusiaaller by a factor of

© 2008 Advanced Micro Devices, Inc.
Proprietary 117

Revision 12 February 3, 2008

AMDA1

2725 or more, US will emit +0.0 rather théhesum of the two remaining components. IEEE is silent on the
behaviorof such fused operations, and it seems unlikely that this coneitibmanifest very often.

MIN and MAX operations return the second argument if either inpNals (this is conistent with IEEE and SM3
specifications); infinitevalues compare as usual. If both inputs afe0G; MIN and MAX will return the second
input (consistent with IEEE and the SM3 spe@ysa result, MIN(+0,0) ==-0, and MIN¢O0, +0) == +0.

CND and CMP ogrations return the second argument if either inphiN; infinite values compare as usual. As
with the predicate compaoperators, +0.0 and.0 are both "equal” to 0.

MIN, MAX, CND, and CMP are guaranteed to return one of their fiivstarguments.f you use
US_OMOD_DISABLED as well, then you wiflet abit-exact representation of one of the first two arguments.

ALU operations usually enable the output modifier, which in stamdardizes NaN values and flushes denormal
results to zero. MOV instruction which preserves the source bits may be implemdaytasdtting
US_OMOD_DISABLED for the instruction and using thi&X(src, src) instruction. The output modifier cannot be
disabledfor a saturated MOV (MOV with clamping enabled).

7.7.3 ALU Transcendenal Floating Point

In US, transcendental operations are EX2, LN2, RCP, RSQ, SIN, andregdsmatically speaking, one of these
functions does not belongYranscendentals do not maintain extra internal precision; as a iiethdtresult of the
transcedental operation exceeds the IEEE fimdage, the ALU will generate infinity even if the output modifier
would bring the result back into range. Similarly if the result is denortimalALU will generate a pure zero
(preserving sign) even if the outpubdifier would bring the result back into the normal range.

Special values are computed as shown in the following table:

INPUT EX2 LN2 RCP RSQ SIN COS
+0.0 +1.0 -Inf +Inf +Inf +0.0 +1.0
-0.0 +1.0 -Inf -Inf +Inf * -0.0 +1.0
+Inf +Inf +Inf +0.0 +0.0 NaN NaN
-Inf +0.0 NaN -0.0 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN

* For RSQ, recall that the square root occurs first. IEEE spesiijig0.0)-> -0.0; the US deviates from this,
however this doesot affect SM3 compliance since RSQ is always usiéd the absolutealue input modifier for
SM3 shaders.

7.7.4 Texture Floating Point

Projected and cubemapped texture coordinates are processed inbloek)isefore being sent to the texture unit.
The texture unit doesot accept NaN, so NaN coordinates @waverted to +infinity beforbeing sent to the texture
unit. As with the ALU, denormal inputs adénormal results are converted to pure zero, preserving sign.

The multiplier used for projection and cubemapping does not fol®& rules when handlingpecial values. This
will become apparerdnly when you attempt to project or cubemap a coordinate that coataingnite or NaN
component.

© 2008 Advanced Micro Devices, Inc.
Proprietary 118

AM Da Revision 12 February B, 2008

You should use caution when generating very large values for gse@inates in a texture lookup. Theseuesl
may generate infinitgalues when scaled by the texture dimensions, projected, or cubemapped.

7.7.5 Legacy multiply behaviour

By default multiplication by zero is IEEEompliant for any ALU instruction. To support legacy (SM1.x) shaders
which did not hag an IEEEcompliant multiplier, set
US_CONFIG.ZERO_TIMES_ANYTHING_EQUALS_ZERGSetting this bit will cause the multiplier used by
MAD, dot productsMDH and MDV to treat "+0 * x == +0" for all values x. Note that IEEteviates from this
behaviour when js infinity or NaN. Modern shadeshould not set this bit.

7.8 Writing to US Registers

The US configuration, integer constant, and boolean constant regiteloe written to directly. However due to
addressing limitationslsewhere in the pipe, theSunstruction and ALU constant registeennot be written

directly; they must be programmed via a vector mechanism provided in the GA block. You write to the vector in
two partsifirst, you program the write destination in GA_US_VECTOR_INDEX, then write data to
GA_US_VECTOR_DATA until you have set all the valugsnterest.

7.8.1 Writing instructions

To write one or more shader instructions, set GA_US_VECTOR_INDEX. TREA_US_VECTOR_INST and
GA_US_VECTOR_INDEX.INDEX to the address of tfiest shadeiinstruction you want to write (from O to 511).
Then writeeach instruction register to GA_US_VECTOR_DATA (usually, a totalwfis per instruction), in the
following order:

ALU/OUTPUT TEX FC
0: US CMN_INST US CMN_INST US CMN_INST
1 US ALU RGB_ADDR US TEX INST 0
2: US ALU ALPHA ADDR | US TEX ADDR US FC_INST
3: US ALU RGB_INST US TEX ADDR DXDY | US FC ADDR
4; US ALU ALPHA INST |0 0
5: US ALU RGBA INST 0 0
A few notes:

1 If you are writing an FC or TEX instruction, you may need to thadvector with eros; note that a zero
dword must be written ithe middle of the FC instruction.

1 You can write to multiple instructions without updating the indéter you write 6 values to
GA_US_VECTOR_DATA, the GA will automatally increment the instruction indeXhe index wraps at
512.

1 If the last instruction you write to is a TEX or FC instructigoy do not need to write the last two zero
dwords that are usddr padding.

1 Similarly, if you do not need to update all instruction registershe last instructioyou write, you do not
need to write theegisters that follow it.

1 You should always write to GA_US_VECTOR_INDEX before writingegjuence of instructions, to
ensure the GA is setup appropriately.

© 2008 Advanced Micro Devices, Inc.
Proprietary 119

AM Da Revision 12 February B, 2008

7.8.2 Writing ALU constants

To write one or more ALU constantset GA_US VECTOR_INDEX.TYPE t6A_US_ VECTOR_CONST and
GA _US VECTOR_INDEX.INDEX to the addressthie first constant you want to write (from 0 to 255). Then
write each constant register to GA_US_VECTOR_DATA (usually, a totdlwfites per constant), the following
order:

0: US ALU CONST R
1: US ALU CONST G
2: US ALU CONST B
3: US ALU CONST A
A few notes:

1 You can write to multiple constants without updating the indédber you write 4 values to
GA_US_VECTOR_DATA, the GA will automatically increant the constant index.

91 If you do not need to update all components of the last consiantrite, you do not need to write the
components that followt.

1 You should always write to GA_US_VECTOR_INDEX before writingegjuence of constants, to ensure
the GA is setup appropriately.

© 2008 Advanced Micro Devices, Inc.
Proprietary 120

AM Da Revision 12 February B, 2008

8. HiZz

8.1 Introduction

The R5xxHizZ (Hierarchical Z) unit performs a coarse z occlusion test on a tile of pixels to generate a mask
indicating whether a set of quads within the tile is potentially visible. The Scan Converterd&8Cyd#s this mask

to determine which quads will be passed on to the Rasterizer (RS) and which will be pruned. In this manner, HiZ
provides an earkput mechanism for dropping quads.

This section presents an overview of the operation of the HiZ unit goiflea on how to program it.

8.2 Enabling HiZ

HiZ operation must be enabled in both the SC and ZB. It is enabled or disabled in the SC by setting the HZ_EN field
in the SC_HYPERZ_EN field to 1 or 0. Similarly, it is enabled or disabled in the ZB by segihjZhENABLE
field in the ZB_BW_CNTL register to 1 or 0.

8.3 Configuring HiZ

The following registers must be set to configure the HiZ unit for operation.

The ZB_HIZ_PITCH register specifies the pitch of the HiZ buffer in HiZ RAM. The host writes the pipckeis.
The register interprets bits [13:4] as the 16 padadned HIZ_PITCH field. This field is used as pitch_mux in
formula 1 in section 2.2, which calculates the DWORD address in HiZ RAM where z floor updates are written
during z cache line evictions

The ZB_HIZ_OFFSET register specifies a base offset into HiZ RAM. Bits [16:2] of this register are the DWORD
aligned HIZ_OFFSET field.

The HZ_MAX field in the SC_HYPERZ_EN register specifies whether the minimum or maximum z in the 8x8 tile
is interpretd as the closest z whose floor is sent to the HiZ unit. The definition of which is the closest depends on
the sense of the z function. For instance, if the z function is LESS, the minimum value is the closest. The
programmer should set this field accordinghe z comparison function that is set in the ZFUNC field of the
ZB_ZSTENCILCNTL register. Setting SC_HYPERZ_EN.HZ_MAX to 0 sends the floor of the minimum, and
setting it to 1 sends the floor of the maximum.

The HIZ_MIN field of the ZB_BW_CNTL registespecifies whether the HiZ unit updates the HiZ RAM with the
floor of the minimum or maximum z value during z cache line evictions. As with the SC_HYPERZ_EN.HZ_MAX
field, this field is also dependant on the z function set in the ZB_ZSTENCILCNTL. SetthdwiN to O updates

HiZ RAM with the floor of the maximum z, and 1 updates with the floor of the minimum.

The following table shows how the SC_HYPERZ_EN.HZ_MAX and ZB_BW_CNTL. HIZ_MIN fields should be
set according to ZFUNC. It also shows what the HiZ Réthuld be initially cleared to, and what action the HiZ

© 2008 Advanced Micro Devices, Inc.
Proprietary 121

AM Da Revision 12 February B, 2008

comparison takes. The é6Z_ MI NMAX® column corresponds to
write to Hi Z(X, Y)&é corresponds to the ZB_BW_CNTL. HI Z

ZFUNC HiZ Clear Z_MINMAX HZ 2" Level Z Function ZB write to HIZ(X,Y)
Value
0 - Never Donét C| Min(Z0, 71, Prune the Block Donét care
Z2)
1-Less Floor(Z_Clear) | Min(Z0, 21, If (floor(Z_MINMAX) > Floor(Maximum(Z))
Z2) HiZ(X,Y))

Prune the Block

Else

Pass the Block

2 - Lessor Equal | Floor(Z_Clear) | Min(Z0, Z1, If (floor(Z_MINMAX) > Floor(Maximum(Z))
Z2) HiZ(X,Y))

Prune the Block
Else

Pass the Block

3- Equal Donét C| Min(Z0, 21, Pass the Block Donbét <care
Z2)

4 - Greater or Floor(Z_Clear) | Max(Z0, Z1, If (floor(Z_MINMAX) < Floor(Minimum(2))

Equal Z2) HiZ(X,Y))

Prune the Block

Else

Pass the Block

5- Greater Than | Floor(Z_Clear) | Max(Z0, Z1, If (floor(Z_MINMAX) < Floor(Minimum(2))
Z2) HiZ(X,Y))

Prune the Block
Else

Pass the Block

© 2008 Advanced Micro Devices, Inc.
Proprietary 122

AMDH Revision 12

February 3, 2008

6 - Not Equal Donére C| Max(Z0, Z1, Pass the Block Donét Car e
Z2)

7 - Always Donét C| Max(Z0, Z1, Pass the Block Donét Car e
Z2)

8.4 HiZ Clear with PM4 Packet

The most efficient manner for a driver to clear HiZ RAM is to use the 3D_CLEAR_HIZ -3Wid4 packet. The

3D_CLEAR_HF packet is described below.

3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.
Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 START Start
3 COUNT[13:0] Count[13:0]i Maximum is Ox3FFF.
4 CLEAR_VALUE The value to write into the HIZ &R\,

8.5 Example: Putting it All Together

Here is a simple example that demonstrates typical steps in setting up the HiZ unit:

/I enable z buffering

regwrite (ZB_CNTL, Z_ENABLE, 1);

/I set the ZFUNC to LESS

regwrite (ZB_ZSTENCILCNTL, ZFUNC, 1); // 1 = LESS

/I enable HiZ in the SC

regwrite (SC_HYPERZ_EN, HZ_EN, 1);

/I enable HiZ in the ZB

regwrite (ZB_BW_CNTL, HZ_EN, 1);

/l set HZ_MAX in SC_HYPERZ_EN to MIN for ZFUNC=LESS
regwrite (SC_HYPERZ_EN, HZ_MAX, 0);

/l set HIZ_MIN in ZB_BW_CNTL to MAX for ZFUNC=LESS
r egwrite (ZB_BW_CNTL, HZ_MIN, 0);

/I set HIZ_OFFSET to O

regwrite (ZB_HIZ_OFFSET, HIZ_OFFSET, 0);

/I set HIZ_PITCH to 1024

regwrite (ZB_HIZ_PITCH, HIZ_PITCH, 1024 >> 4);

/I initialize the HiZ RAM to a clear value of Oxff

/I for all the bytes in a 1024x768 a rea:

/I set initial write index. It will auto - increment
/I after each write to ZB_HIZ_DWORD

regwrite (ZB_HIZ_WINDEX, HIZ_WINDEX, 0);

© 2008 Advanced Micro Devices, Inc.
Proprietary

123

AM Da Revision 12 February B, 2008

/I write floors for one 8x8 tile with each DWORD.

/I this example assumes a dual - pipeline configuration.
/ since half th e screen is owned by the second pipeline,
/I and host writes are broadcast to both pipeline RAMS

/I at the same address, we write the clear DWORD for

/l half of 1024>>3. In a single - pipeline configuration,
/I we would write the clear DWORD for 1024>>3.
for(inty=0;y< (768 >> 3); y++)

for (int x = 0; X < ((1024 >> 3)>1); x++)
{

}

}

/I read back a DWORD in pipeline 1 at address 0
regwrite (SU_REG_DEST, SELECT, 1);

regwrite (ZB_HIZ_RINDEX, 0);
DWORDIwGetHiZValue = regread (ZB_HIZ_DWORD);

regwrite (ZB_HIZ_DWORD, HIZ_DATA, OXxffffffffL);

8.6 State Changes That Invalidate HiZ

This section describes the conditions that invalidate HiZ RAM and those that have no effect.

Disabling Z testing or disabling Z writes does not invalidate HiZ RAM, so no sgetiah is required in these
cases. Because both of these states result in no new z data being written to the z buffer, there are no z cache
evictions that update the contents of HiZ RAM. Therefore, HiZ RAM is preserved and can continue to be used after

Z buffering or Z writes are renabled.

Certain ZFUNC transitions can invalidate the contents of HiZ RAM. As a general rule, the safest approach when
ZFUNC is changed is to disable HiZ testing until the contents of HiZ RAM are reset, e.g. until thetbameft
frame where HiZ RAM is rénitialised. Having said that, there are transitions where either HiZ does not need to be

disabled, or it may be +enabled before the end of the frame:

1) HiZ does not need to be turned off when transitioning back andtettieen LESS and LESSEQUAL.
HiZ must be disabled when transitioning from either LESS or LESSEQUAL to EQUAL, but may be re

enabled when transitioning back from EQUAL to LESS or LESSEQUAL.

2) Hiz does not need to be turned off when transitioning back artu iettveen GREATER and
GREATEREQUAL. HiZ must be disabled when transitioning from either GREATER or
GREATEREQUAL to EQUAL, but may be fenabled when transitioning back from EQUAL to

GREATER or GREATEREQUAL.

All other transitions invalidate the contentsHiZ RAM with respect to the new sense of the z comparison.

© 2008 Advanced Micro Devices, Inc.
Proprietary

124

AM Da Revision 12 February B, 2008

9. Driver notes
9.1 R5xx Changes

9.1.1 PS3.0

R520 TX supports pixel shader model 3.0. Support febiBEEEE input coordinates from the shader aneb®2
IEEE output colors to the shader. Support for peelpior per quad) TEXLDB, TEXLDL, and TEXLDD
instructions.

9.1.2 Filter4

R520 can support limited Filter4 filtering. The kernel is 4x4 symmetric and separable with 16 phases. The kernel
weight precision is S,1.9. There is one global kernel shared by allgexithe kernel is loaded using the global
TX_FILTERA4 register. Filter4 can be enabled per texture using the MAG and MIN filter registers. Only one of four
8-bit components can have Filter4 applied at a time. That component is selected using FORMAT2.SER4FIL

9.1.3 Maximum Image Extents
R520 supports up to 4K texels in width, height, or depth.

9.1.4 Trilinear Interpolation Precision
R520 supports-Bits of trilinear precision. R420 supportedis.

9.1.5 Image Formats
New image formats over R420 : ATI1N, 10, 10_10,10 10 10, 1,1 REVERSED

9.1.6 Border Color

Added border color support for FAT formats, specifically 16_16_16_16, 16f 16f 16f 16f, 32f 32f,
32f _32f 32f 32f. Border color is now supported for all image formats.

9.1.7 Non-Square mipmaps with border color

Added moe register FILTER1.BORDER_FIX which when asserted will stop right shifting the texture coordinate

once the image size has been right shifted to one. BORDER_FIX only needs to be asserted when the clamp mode is
a border mode and mipmapping is enabled andnibenap is norsquare. However it should be safe to assert
BORDER_FIX anytime.

9.1.8 POW2FIX2FLT

Added mode register FORMAT2.POW2FIX2FLT which when asserted the TX will divide by pow2 instead of
pow2-1 when doing fix2float conversion of the filtered textureocol

9.1.9 GA IDLE

R520 has a new status register called GA_IDLE which can be used to get information abaurtchbakgs. To
read this register, the following procedure may be used:

1 Read RBBM_STATUS to make sure the HW is hung. If GA bit is busy, this ntigate a
backend hang.
1 Write 0x32005 to the RBBM_SOFTRESET register. This is to reset GA, CP and VAP.

© 2008 Advanced Micro Devices, Inc.
Proprietary 125

AM Da Revision 12 February B, 2008

1 Read RBBM_SOFTRESET to make sure the write went through.
1 Write 0 to RBBM_SOFTRESET. This is necessary to get VAP to go idle.
1 RBBM_STATUS should now siw that VAP and CP are idle but GA still busy. If GA is not busy,
then GA_IDLE should be readable at this point.
1 If GA was still hung, write 0x200 to GA_SOFTRESET
1 Now GA_IDLE can be read. See the register spec for details on what each bit meansh Bldte ta A 1 0

indicates an idle unit.

9.1.10 HDP surface0 upper boud 64 byte alignment requirement

HDP surface 0 upper bound needs at least 64 byte alignment. This applies only to surface 0 and not to surface 1 to
7, which can be programmed as specified (32 alytmed).

9.1.11 New Soft resets for CP
CPnow has total of 3 soft resets:

CP_SOFT_RESET =as before (for backward compatibility)
CP_SOFT_RESET_NO_DMA => soft reset CP except DMA engine

CP_SOFT_RESET_DMA => soft reset only DMA engine of CP.

9.1.12 CPSTOP CONEXT

Once SC/CB informs CP to stop_context, CP will not fetch/process any further read requests from command
buffers.

9.1.13 UpdatedCP Scratch compare logic
Scratch register interrupt functions as follows:

(a) Driver programs two 32bit registers with timestamp fangarisons with a pair of scratch registers. We can call
this as DRV_REGS

(b) Driver programs PM4 stream with writes to two consecutive scratch registers (pairgé®&5495,6-7) to be
compared with DRV_REGS.

(c) In due course of time PM4 pkt would geeeuted , this address/data would sit in the input fifo of CP , ready to
program both the scratch registers.

(d) As soon as CB (color buffer) sends two sets of RESYNC pulses (4 of them from each pipe with mask), CP
allows the FIFO contents to get transéerto scratch registers for further action. (RBBM transactions are stalled at
this time)

(e) SCR_REGS data gets compared with DRV_REGS data for preprogrammed condition of either "equality" or
"non-equality” or "greater than" or "less than " or "greatentbaequal” or "less than or equal”.

© 2008 Advanced Micro Devices, Inc.
Proprietary 126

AM Da Revision 12 February B, 2008

(f) If the condition is satisfied then an interrupt is generated informing driver/system teuyakel proceed for the
next command.

(g) The scratch register data gets written to system memory (if umask is set) appedmaddress to be read back
by the system/driver.

9.1.14 Host requests (GFX, ISYNC CNTL, RBBM GUICNTL, WAIT UNTIL)

PreR5xx, requests made within the aperture range OxX4BAEFF and 0x2000 OxFFFF were queued=rom
R5xx, onwards these requests will net ueued. ISYNC_CNTL, RBBM_GUICNTL and WAIT_UNTIL can be
programmed only for queued requests. As none of the host (P10) requests are queaadnbfpsbgram above
three registers through PIO.

9.1.15 Double Z

RV530 has two Z pipes, but a single raster pilpethe past, SU_REGDEST was used to select which raster pipe
you want to select. On RV530, you use FG_ZBREG_DEST. Because the pipe selection happens in the FG, you
must be in Z bottom mode This mainly applies to occlusion queries where you wantttd gass data from each

Z unit.

9.1.16 FP16 AA support

R5xx-family chips support FP16 AA. However, there is an issue with the blend optimizations while FP16 AA is
enabled. Because of this, RB3D_BLENDCNTL.DISCARD_SRC_PIXEiLSt beset to
CB_DISCARD_SRC_DISABLBEwhile FP 16 AA is enabled.

9.1.17 FP16 Blending

FP16 (64bit pixel) bleding is added in R5xgarts. FP16 Blend bandwidth is half the rate of 32 bit pixels; i.e. 8
pixels/clk in a 16 pipe system. FP16 blending uses the new 64 bit clear color register tamt cofa registers.

Setting the FP16 blend equation to multiply by 1.0 is subtly different from disabling blending. A negative zero
(Ox8000) will be converted to zero (0x0000) if it is blended but 0x8000 will be drawn if blending is disabled. The
driver should distinguish between FP16 and 16 bit integer formats and never enable blending for 16 bit integer
formats. The CB FP16 implementation supports denorms but does not support NaNs and Infs. Only a 4 component
(ARGB16161616) format is supported. Thare no 116 or IA1616 formats.

9.2 Interface Notes

9.2.1 Raster Reset
The proper sequence for a full raster reset is the following:

1 Perform a RBBM reset with the GA RBBM client flag set
1 Perform a register write to the GA_SOFT_RESET register, with a value of @x20§her

In the above sequence, the first item causes the GA to delete all pending register reads & writes and resets the
RBBM interface. If the GA status is idle, then the RBBM reset is not required. After this reset, the GA is ready to
accept registeread and write commands. However, the 3D pipe could be in a hung state, which would prevent it

© 2008 Advanced Micro Devices, Inc.
Proprietary 127

AM Da Revision 12 February B, 2008

from accepting 3D commands or register commands.

The second operations (GA_SOFT_RESET) causes a soft reset of the 3D pipe. This reset causes a ldesrof all sta
the 3D, except in the GA & SU blocks. Shadow register valuesaineset. The 3D pipe should then switch to the

idle state after the reset. It will take 0x200+ cycles for the idle state tedsseeted (should be less than 0x200 +

64). The valuef 0x200 is a suggestion, which should be enough to reset all the pipelines. A larger value can be
used (up to 16b), but should not offer any benefit.

9.2.2 Non-textured, noncolored primitives

The R300 always does at least one 2D texture and one colorpéiveri The RS_COUNT has a baseline value of

1, which indicates up to 1 color and 1 texture are to be rasterized. The other registers used to specify the colors and
textures are the VAP_RASTER_VTX_FMT_0 and RASTER_VTX_FMT_1 registers. These registessserid

have no color and no texture. So if one wants to specify dextired and nowolor primitive, one should set the
RASTER_VTX_FMT registers to no color and no texture, and set the RS_COUNT to 0. The raster will still

rasterize the extra colora@textures, but the rasterized values will be wrong. The shader code should then be set to
ignore the texture coordinates and colors and to setup a constant color, or the CB could be disabled so no color
writes occur (to setup the ZB, for example).

9.2.3 Flushing primitives out of the SC

All 3D operations need to be terminated with a register write to the SC, US or some down stream register. Unless
this is done, the SC/RS will never assert idle (which will be reflected as GA_BUSY). The final polygon rendered
should still drain out of the pipe.

9.3 Register Notes

9.3.1 Update to reqgister reads

R520 and followon chips now support simultaneous G3D register reads and writes. Coherency of reads and writes
is not guaranteed (reads can occur before writes). However, swittbhim write/cmd mode to read mode (PIO
through RBBM) does not require idling the G3D pipe anymore. However, this mode is not enabled by default. The
following fields have been added to the GA_ENHANCE register:

REG_READWRITE 2:2

REG_NOSTALL 3:3

Whenthe REG_READWRITE field is set, this enables the GA to support simultaneous register reads and writes.
However, simply enabling this mode allows the GA to receive both read and write commands (and to deal with
both), but it still tells the GA to wait faegister return before continuing. Consequently, the GA will cause a stall
bubble, of (n) cycles to be injected, where (n) is the latency for register read back. If the register is shadowed, that
value is very small (A few cycles). If not, then it canhundreds of cycles

When REG_NOSTALL field is set, this enables GA to support mixing the G3D pipe with reads and other activity;

in this mode, the register read is simply part of the pipeline data. This mode would allow for no performance hit at
all, when doing register reads, since the GA will not cause a stall bubble (it will not wait for the register data to
return). It does not permit the GA to have multiple outstanding read requests, but it allows for minimal performance
impact.

9.3.2 Reqisters that causstalls

© 2008 Advanced Micro Devices, Inc.
Proprietary 128

AM Da Revision 12 February B, 2008

9.3.2.1 ZB Registers

Unpipelined registers

Writes to these registers causes a stall in the pipe. The stall is on as long as there are any quads in the ZB block.
Once the ZB block is empty the register is updated and the stall is removed. If multiplelimeyi registers are

updated with no quads in the middle, then the first one will cause a stall to drain the ZB, but the following

unpipelined writes will go at full speedé
ZB_FORMAT

ZB_ZCACHE_CTLSTAT

ZB_BW_CNTL

ZB_DEPTHOFFSET
ZB_DEPTHPITCH
ZB_DEPTHCLEARVALUE
ZB_HIZ_OFFSET
ZB_ZPASS_DATA
ZB_ZPASS_ADDR
ZB_DEPTHXY_OFFSET

Pipelined Registers
ZB_CNTL
ZB_ZSTENCILCNTL
ZB_STENCILREFMASK
ZB_HIZ_DWORD

Special register ZTOP

Whenever ZTOP register is switched from 1 to 0 or O to 1 a stall occurs at the SC stage of the pipeearainay
when all the quads between the SC and CB are drained from the pipe. Then the Zbuffer is moved iirtlee.pipe
Writing to Ztop a value that it currently holds (0 to O or 1L}dnas no performance penalty.

9.3.2.2 CB Registers

Unpipelined registers

Writes to unpipelined registers cause the CB to stall until all previous quads, pipelined registers, and partially
pipelined registers have finished processing. Once an unpipelined register has been written, a write to another
unpipelined register will ot cause more stalls as long as there are no intervening quads, pipelined registers, or
partially pipelined registers. The unpipelined CB registers are the following:

RB3D_CCTL
RB3D_COLOR_CLEAR_VALUE
RB3D_COLOROFFSET(0, 1, 2, 3)
RB3D_COLORPITCH(O, 1, 2,)3
RB3D_DSTCACHE_CTLSTAT
RB3D_AARESOLVE_OFFSET
RB3D_AARESOLVE_PITCH
RB3D_AARESOLVE_CTL
GB_TILE_CONFIG
GB_AA_CONFIG

Partially pipelined registers
Partially pipelined registers are pipelined everywhere in the CB except in one module. That module mutt stall

all the quads that it is currently processing have finished. The number of stall cycles should not exceed about 15
cycles. The partially pipelined CB registers are the following:

© 2008 Advanced Micro Devices, Inc.
Proprietary 129

AM Da Revision 12 February B, 2008

RB3D_ROPCNTL
RB3D_CLRCMP_FLIPE
RB3D_CLRCMP_CLR
RB3D_CLRCMP_MSK

Pipelined registers
These registers are fully pipelined and may be freely intermixed with quads without causing stalls. The pipelined

registers are the following:

RB3D_BLENDCNTL
RB3D_ABLENDCNTL
RB3D_COLOR_CHANNEL_MASK
RB3D_CONSTANT_COLOR
RB3D_DITHER_CTL

CB register ordering

Because unpipelined registers can stall on preceding pipelined or partially pipelined registers, it is recommended
that all unpipelined registers are written first. Pipelined and partially pipelined registers may be freely intermixed
without penalty.

9.3.2.3 TX Registers

Global registers

Global registers are registers that affect all texture stages. On a write to any global texture register, the US will wait
for the TX to flush completely before passing the register to the TX. This could take order of a couple

hundred clocks worst case. Obviously writes to these registers should be minimized. There are two global registers
that cause the TX to flush : TX_INVALTAGS and TX_PERF.

Stage registers

Stage registers are registers that only affeat the 16 possible texture stages. On a write to a Stage register, the US
will wait until that texture stage is inactive in the TX pipe, and only then will it pass the rdgisite TX It is

therefore important to rotate through the 16 sets of regitieavoid a register write to a stage that is still being
processed in the TX. Otherwise unnecessary stalls will occur.

9.3.3 Reqisters that affect performance

9.3.3.1 US_W_FMT
When the W value is not being used (FG_DEPTH_SRC does not select discrete W), ttegyistieisshould be set

to specify that the source is the US and the format is always 0. Specifying that W comes from the rasterizer causes
stalls inside the US.

9.3.4 Other Registes

9.3.4.1 GB_TILE_CONFIG

The GB_TILE_CONFIG contains multiple raster pipe contrdtii8e Some of these need a soft reset afterwards to

apply the change. All of them require the pipe to be idle before performing the change. As well, in the R5xx, this
register is simply shadowed in the shadow RAM, except for the PIPE_COUNT field, wiviysdhdicates the

internal value of this field. This might or might not match the written value, depending on bad_pipes and max_pipes.
All fields after Hard reset will show the default values shown below. The fields all hard reset to the default values.

© 2008 Advanced Micro Devices, Inc.
Proprietary 130

AMDA1

Revision 12

February 3, 2008

Soft reset (GA_SOFT_RESET) does not affect this register.

Here are the fields, with the default values, the reset status and a slight comment:

Fields Possible values Defaults Reset Comments
Enable [0:0] 0: Disable tiling Enabled (1) If changed, soft | The default value of
1: Enable tiling reset should be (1) should never be
applied changed
Pipe_count [3:1] 0: RvV350 Depends on fuses | If changed, soft Should be

3: R300 reset should be programmed with 4P

6: R420 (3 pipes) applied (7), 3P (6, 2P (3) or

7: R420 (4 pipes 1P (0).

Tile_size [5:4] 0: 8x8 pixels 1:16x16 No reset required | R5xx supports 16x16

1: 16x16 pixels or 32x32 only.

2: 32x32 pixels 32x32 should be
used, in 3p or 4p
cases, as performang
testing determines

Super_size [8:6] 0: 1x1 tile 0: 1x1 tile Only 1x1 mode
1:two 1x1 A,B tiles guaranteed Feature

2: one 2x2 tile only used in mult

3: two 2x2 A,B tiles chip boards
Only support super
tiling with 1, 2 or 4
pipes (not in 3P
config)

Super_X, Super_Y, | 7b ID identifies 0 No reset required | When in single chip,
Super_Tile [15:9] unique location of value should be 0.
chip in multichip

board

Subpixel [16:16] 0: 1/12 subpixel 0:1/12 Can be changed | Selects the 1/12 or
1: 1/16 subpixel whenever pipe is | 1/16 subpixel mode

idle without Reset

Quals_per_ras 0: 4 quads 0: 4 quads No reset required | Reserved for R350

[18:17] 1: 8 quads Leave at 0 for R300,
2: 16 quads RV350
3: 32 quads

Bb_scan [19:19] 0: Use intercept sca| O: Intercept No reset required | Intercep method is
conv. new and higher

1: Use bounding boy performance.

scan conv. Bounding box is
traditional & slower,
but fAguar g
work. Should only be
changed if raster
issues come up.

Alt_scan_en[20:20] | 0: Do Z type scan | O: Z type Can be changed | RV350 andR420

conversion
1: Do S type scan
conversion

when pipe idle.

support S scan
conversion, which
maintains local
coherence from scan
line to scan line,
instead of Z type

© 2008 Advanced Micro Devices, Inc.

Proprietary

131

AM Da Revision 12 February B, 2008

whi ch HfAgoe€g
the left on every scan

line
Alt_offset[21:21] 0: Use 1440/1088 | 0: 1440/1088 mode | Should be When in mode (1),
offset for SC switched when allows for a render
1: Use 672/1088 pipe is idle. target of 4k x 4k,
offset for SC only for 1/12

subpixel mode. The
X,Y offsets in the GA
are not affected, so
that the viewport
should be loaded with
a value of (672
1440=768) to match.

Subprecision [22:22] | 0: Uses 4b of sub | 0: 4b Should be Allows for 4 extra
pixel precision changed when bits of subpixel
1: Uses 8b of sub pipe is idle. precision. All
pixel precision computations done in

higher precision
when in use.Should
always be enabled.

Alt_tiling [23:23] 0: Use regular tiling | 0: Regular tiling No reset required | Empirical testing
for 3P mode needs to be done to
1: Use alternate determine which has
tiling for 3P mode higher performance.
Either tiling mode is
possible.
Z_extended[24:24] 0: Use [0,1] Z clamp| 0: R3xx/R4xx mode | Should be Should allow us to
range changed when increase guardband.
1:Usef2,2]Z pipe is idle Per pixel clamping to
range [0,1] still occurs in
SC

9.3.4.2 GB_PIPE_SELECT

GB_PIPE_SELECT contrslthe physical and logical pipe mapping, as well as the total number of active pipes. It
works with GB_TILE_CONFIG to configure the pipelines. It is procedural and not shadowed; if you read the
register back after hard reset, you should get the defalukks. Changing this register is generally not required, if

the fuses are set correctly (i.e. max_pipes reflects total number of working and desired pipes; bad_pipes indicates
which of the 4 pipes are bad). The MAX_PIPES and BAD_PIPES fields ar@ndgdnd reflect what the SU unit
receives from the fuse unit. The fuse unit can be programmed to alter the max_pipes/bad_pipes, but not contrary to
the actual fuse settings (can never set, through SW, internally max_pipes to higher than the fuse setting).

Fields Possible Values | Defaults Reset Comments
PIPEO_ID [1:0] 0,1,2,3 Depends on fuse{ Pipe should be | Determines the logical mappin
i Often 0 soft reset after of physical pipe 0
changing
PIPEL1_ID [3:2] 0,123 Depends on fusey Pipe shald be Determines the logical mappin
i Often 1 soft reset after of physical pipe 0
changing
PIPE2_ID [5:4] 0,1,2,3 Depends on fuse{ Pipe should be | Determines the logical mappin
i Often 2 soft reset after of physical pipe 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 132

AMDA1

Revision 12

February 3, 2008

changing

PIPE3_ID [7:6]

0,1,2,3

Depends on fuse

T Often 3

Pipe should be
soft reset after
changing

Determines the logical mappin
of physical pipe 0

Pipe_mask [11:8]

0 through 16

Depends on fuse

T Max is 4

Pipe should be
soft reset after
changing

Each bit of the mask identifies
if a physical pipe is good (1) or
not (0). A value of Oxf
indicates 4 good pipes.

Max_pipes [13:12]
Read Only

0: 1 good pipe

1: 2 good pipes
2: 3 good pipes
3: 4 sweet pipes

Depends on fuse

Read only field

Indicates the fuse state for the
number of good pipes.
GB_TILE_CONFIG.pipe_coun
should not try to use more thar
this number of pipes. HW will
ignore any programming that
tries to override this value.

Bad_pipes [17:14]

0 through 16

Depends on fusey

Read only field

Returns a (1) for each good
pipe. Matches ipe_mask
format. You cannot enable mo
pipes than max_pipes.

Config_pipes
[18:18]

0: Do nothing
1: Force aute
config

N/A

Should be soft
reset after
writing, if fields
are changed

Causes the HW to ignore the
pipe#_ID and pipe_mask fieldg
and to generatthose values

based on the fuse state.

The GB_PIPE_SELECT configures the pipes to match the desired configuration. SW should not attempt to
configure the pipes in a way that contradicts the max_pipes value, which is programmed thrdigytuses at @i

test time. SW will be ignored if it contradicts the fuses. However, the bad_pipes can be programmed to enable a
pipe,

fimar ked

bado

but it

mu st

than max_pipes, otheige the HW will ignore the bad_pipes register.

9.4 Feature Notes

9.4.1 Switching Pipeline configuration / Resetting 3D pipe

t hen

di sabl e a

The raster pipeline can be switched from single pipe to dual pipe and back through the use of the

GB_TILE_CONFIG register. As well, the GBILE_SELECT should be used to select the physical pipes to use.

Switching from one mode to another requires the following sequence:

I The 3D pipe must be idle (WAIT For 3D IDLE)
1 The GB_PIPE_SELECT register should then be read, to determine the curreptpeayand bad_pipes.
The SW can then program it with those values or new values.
1T The GB_TILE_CONFI G registero6s PIPE_COUNT field
P10):
o 0xO for single pipe (RV350
0 0x3 for dual pipgR300)
o 0x6 for triple pipe (R4203P)
0 0x7 for quad pipe (R420
1 The 3D pipe & GUI must be idle again after writing the registers
1 The GA_SOFT_RESET register must be written with 0x100 or greater (use PIO)
© 2008 Advanced Micro Devices, Inc.
Proprietary 133

good

pip

s hou

AM Da Revision 12 February B, 2008

Wait for ~1 ms (prevents race conditions between GA_SOFT_RESET And 3d tderstad)

The 3D pipe & GUI must be idle again to permit any other activity (register or data) (read RBBM status for
GAidle)

1 If the fuses are set to limit the number of active pipes to a given level (1,2,3 or 4), then GB_TILE_ CONFIG
and GB_PIPE_SELECT g#tgs will not be able to override those values. A hang or other problem could
actually occur if SW tries to enable fibad pipeso.

= =4

The above sequence will invalidate the state of the pipe as well as switching it.

For resetting the pipe, the same pro@sabove is followed:

The 3D pipe must be idle (WAIT for 3D IDLE) or hung

The RBBM soft reset of GA must be done, if chip is not idle

The GA_SOFT_RESET register must be written with 0x100 or greater (use PIO)

Wait for ~1ms

The 3D pipe & GUI must be idle agn to permit any other activity (read RBBM status for GA idle)

= =4 -4 -4 -9

9.4.2 Switching vertex data rounding mode

The GA_ROUND_MODE register can be used to select between round to nearest and truncate (round to 0) for both
vertex geometry (X,Y) and color conversioife default is to truncate. This register should only be changed when

the 3D pipe is idle. Otherwise, switching can occur in the middle of primitives, which could cause visual anomalies.
This register, once set, should never be changed again.

9.4.3 Switching from 1/12" to 1/16" subpixel mode

Switching from 1/12 to 1/16 subpixel mode is done through the use of the GB_TILE_CONFIG register. Normally,
changing this register requires the use of a soft reset afterwards. However, changing the subpixel field does not
require a reset. However, it does require that the 3D pipe be idle. Also, the Z buffer can become incompatible after
switching the subpixel mode. Basically, if Z compression is enabled, the values contained in the Z buffer are
incompatible between subpixmodes, so that the buffer needs to bénitalized after each switch.

9.4.4 Fastfill and compression in Z

Fast fill and compression only works in midited mode. The following table shows the valid combinations of fast
fill and rd/wr compression :

Fag Flll RdCompression WrCompression | description
0 0 0 no fastfill or compression, the Z buffer has to be cleared explicitly.
1 0 0 fastfill, Z buffer does not need to be cleared explicitly, The zmask should

will hold the cleared Z value

1 1 1 Same as above , with compression turned on.

set to 26b00 f or edardwingviindow. Ted zb_cldarvdly

1 1 0 Used to decompress , a compresse

Note that all other combinations in the above table are invalid. The emulatorriarpmed to generate an assert in
thee casesCompression does not work with all-b@ formats. For 16it integer buffering, compression causes a
hung with one or two samples and should not be used.

© 2008 Advanced Micro Devices, Inc.
Proprietary 134

AM Da Revision 12 February B, 2008

9.4.5 Z-Top

It is beneficial for performance to have Zfau at the top of the pipe, since the quads that do not pass Z buffer do
not have to be sent to the shader. Depending on how many instructions the shader executes, this could gain you a lot
of advantage. There@aseveratases in which the Z buffer hashe at the bottom:

1- Alpha thresholddfunction is turned on
2- Shader uses texkill instructions.

3- Chroma key cull enabled.

4- W-buffering

Cases 1,2 and 3 can kill a pixel before Z buffering . However, if the contents of the Z/stencil buffer will not be
modified, then ztop can remain enabl@d. This implies that the following staigin effect:

1- Z-buffering is disabled or Zwritenask is off .
2- Stencil is disabled or steil-wrmask is off or SFAIL/ZPASS/ZFAIllare all set to KEEP.

W values are always genegdtat the bottom of the pipe, so fotbuffering, ztop should be set to 0.

There is penalty in moving the Z buffer from top to bottom or vice versa. The pipe will be stalled at the sc and all
the quads that are in the pipe between the sc and cb haegtodessed before the switch occurs. This is all done in
HW. If the ztop =0 and you write another 0O toliette is no performance penalty.it is 1 and you write a 1 to it,

there is no performance penalty. The penalty is only incurred when you $witckop to bottom or bottom to top.

9.4.6 Sub-sample locations

In point sample mode, POSO0 defines the X,Y of the upper left pixel of the quad. POS1 defines the X,Y of the upper
right pixel of a quad. POS2 defines the X,Y of the lower left pixel in a quad @83 Eefines the X,Y of the lower

right pixel in a quad. This is done so that in R200 style ss@epling mode, the sample locatidosthe pixels can

be jittered Hierarcical Z has to be shut off when the 4 pixels in the quad have diffecatibns inpoint sample

mode.

In multi-sample mode , samples 0,1,2,3,4,5 of pixels 0,1,2,3 of a quad are defines by pos0,1,2Ba, pixels in
the quad have the same ssdmple pattern.

There is a quirk when setting the MSPOS0.msbd0_x. The value regrésedistance from the left edge of the
pi xel quad to the first sample in subpixels. Al'l val
used f or t hTae hdriware wilhcoreert@ Bitd 8 internally.

It is also importat that when using less than 6 multisample positions, the unused samples must be set to the position
of other valid samples.

9.4.7 Dithered Clears

Fast cmask clears of a subsampled buffer will not be dithered.
The ZB doesndt do c olwllmotieidithéredr i ng so ZBCB <cl ear s

When doing clears in 16 bit mode with dithering enabled the driver should examine the clear color value and
determine if it would be affected by dithering. For example a color value of zero when dithered will remain zero for
all dither factors. If the color would not be affected by dithering either fast clears or ZBCB clears can be used,
otherwise a full window rectangle write should be used to clear the buffer. This is only an issue for 16 bit buffers
with some clear color values siardware support is not provided.

© 2008 Advanced Micro Devices, Inc.
Proprietary 135

AM Da Revision 12 February B, 2008

9.4.8 4x AA tiling

R420 introduced a newliig mode for 4x AA buffers.Each 4x4 block of pixels occupies 8 cache lines of memory

(32 bytes per cache line). When the block is decompressed, the color samples are grotieed idyes, all 16

sample Os are in one chunk, all 16 sample 1s are in another, etc. On R300, decompressed blocks where organized
with sample 0s being first, then sample 1s, then 2s then 3s. On R420, groups of 8 cache lines have the top and
bottom halvs interchanged when the block address is odd in the x dimension. For example, block (0,0) is organized
just like R300, but block (1,0) would have samples 2 and 3 before samples 0 and 1. Block (2, 0) would be just like
R300 again.Note: This new tiling mode only applies when memory mapping is disabled.

9.4.9 8x8 Z plane compression

Chips based on the RV350 and beyond support a new 8x8 Z plane compression mode specified in the
GB_Z PEQ_CONFIG register. When compression is not enabled, the Z plane compreskdramto be set to
4x4 in order for the GA and ZB to agree on the Z plane equation format and avoid visual corruption.

9.5 Blend optimization notes

9.5.1 Disabling reads during blending

The destination color is not necessary for some blending operations. Thas alvead enable called
RB3D_BLENDCNTL.READ_ENABLE to control whether the destination color is read or not during blending
operations. Reads must be enabled during blending operations that require the destination color. Failure to do so
will result inincorrect results. Leaving the register enabled when blending is disabled does not have any adverse
affects.

9.5.2 Discarding pixels based upon the source color

There are cases where blend operations do not change the contents of the frame buffer. Foraeidamgero to

the frame buffer does not change the frame buffer contents. Although the operations do nothing to the frame buffer,
they still take bandwidth. The cb can discard pixels based on the source color to eliminate some useless blend
operations The RB3D_BLENDCNTL. DISCARD_SRC_PIXELS register controls the functionality. When to use

this feature is under driver control. The cb will not override this register if it is not safe to use under the current
blending mode.

9.5.3 ZB/CB cache flushes

ZB/CB cache flushes take hundreds of cycles to complete, so they should be avoided if possible. Performing a
cache flush when the cache is already clean only takes
multiple times as long as there are nigimening quads.

9.6 Texture Notes

TX_CHROMA_KEY must be the same format as the texture b
should be AVYU for all YUV formats.

TX_FMT_*_MPEG formats are implicitely signed. However the TX_FORMAT1_*_SIGNED_COMBriist
still be explicitely set. It is a bug to use an MPEG format and indicate that the components are unsigned.

© 2008 Advanced Micro Devices, Inc.
Proprietary 136

AM Da Revision 12 February B, 2008

9.7 Errata

9.7.1 Facing bit with Polymode & colors

INRExx, just as R4xx, when |l ines are seninformationnslosthe set up
since no facing information is sent between the SU and SC. This implies that lines will always be treated as
Aiforward facingd in the scan converter. This facing in:

be usd as a conditional.

Consequently, in polygon outline mode, where lines have front and back meaning, when rendering a line polygon
(for either front or back), the facing bit will always be marked as front facing, regardless of the facing of the original
triangle. Back / Front culling does occur correctly here (i.e. if the front render is line and front face culling is
enabled, then no front facing lines will get drawn), but the facing bit for rendered lines or points will be always front
facing.

The R5xxcontain a workaround for this problefin the form of a special modé& his mode is enabled by setting

the bits of SU_PERF.PERF3_SEL to all 16s (31). When e
the colors to be set to (0) for fromtding, or (1) for back facing. All colors in a primitive will get their sign bit

changed, based on the facing of the primitive, or of its provoking vertex (in the case of polymode). If source colors

are positive, then, in the pixel shader, back facirnggmms will have negative colors, while front facing polygons

will have positive colors. This mode will work, regardless of PS2 or PS3 mode in the pipe.

9.7.2 PS3 Polymode textures

In the R5xx mode, polymode texture coordinates are not computed correctlyhghgpe is in PS3 mode. To fix

this, a polymde_ps3ix has been implemented. This mode is enabled by setting the GA_PERF.PERF3_SEL[4] bit
to Ox1. This mode should only be set when in PS3 mode. As well, when set and in PS3 mode, colors will not
longerbe computed correctly in polymode for polygons, but that is acceptable, since colors are not naturally
available in PS3 mode.

9.7.3 GA Foq stuffing

The GA supports stuffing the fog value (either an FP20 from>&Ta, or W or Z) into a texture compam. The
limitation for R5xx, is that the GA can only stuff the component of the first active texture. It can only stuff any one
of the first 2 active components of the first active coordinate set.

9.7.4 Line rendering

When subpixel precision is enabled, there is ssifility that the rendering hardware will determine an incorrect
dominating direction, when the start and end X values of the line have the same 1/12 or 1/16 pixel value, but
different subpixel values. This can cause double pixel hits or missing pixadstinuous line drawingThe work
around,is to disable subpixel precision rendering when drawing lines.

9.7.5 PS3 VTX EMT & PS3 TEX SOURCE

Writes to the PS3_VTX_FMT and PS3_TEX_ SOURCE register can cause bad textures or hangs in R5xx chips, if
followed immaliately by VF_CNTL writes (i.e. draw command¥ollowing any of these 2 registers with 2 register
writes (to GA or any block below) will always avoid the problem, before the next VF_CNTL.

© 2008 Advanced Micro Devices, Inc.
Proprietary 137

AM Da Revision 12 February B, 2008

10. Registers

10.1 Color Buffer Registers

|CB:RB3D_AARESOLVE_CTL - [R/IW] - 32 bits - Access: 8/16/32- MMReg:0x4e88 |
IDESCRIPTION: Resolve Buffer Control. Unpipelined |
|Field Name ||Bits “Default ||Description |

AARESOLVE_MODE 0 0x0 Specifies if the color buffer is in resolve mode. The
cache must be empty before changing tegster.

POSSIBLE VALUES:

00 - Normal operation.

01 - Resolve operation.
AARESOLVE_GAMMA 1 none Specifies the gamma and degamma to be applied to
samples before and after filtering, respectively.

POSSIBLE VALUES:
00-1.0
01-2.2

AARESOLVE_ALPHA 2 0x0 Controls whether alpha is averaged in the resolve. 0
the resolved alpha value is selected from the sample
value. 1=> the resolved alpha value is a filtered (ave
result of of the samples.

POSSIBLE VALUES:
00- Resolved alpha value is taken from sample O
01- Resolved alpha value is the average of the

samples. The average is hot gamma corrected.

|CB:RB3D_AARESOLVE_OFFSET - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x4e80 |

DESCRIPTION: Resolvebuffer destination address. The cache must be empty before changing this registe
ch is in resolve mode. Unpipelined

[Field Name |Bits |Default |[Description |
IAARESOLVE_OFFSET [31:5 lnone |[256-bit aligned 3D resolve destination offset. |

|CB:RB3D_AARESOLVE_PITCH - [R/W] - 32 hits - Access: 8/16/32: MMReg:0x4e84 |

DESCRIPTION: Resolve Buffer Pitch and Tiling Control. The cache must be empty before changing this r¢
the cb is in resolve mode. Unpipelined

|[Field Name |Bits |Default |[Description |
IAARESOLVE_PITCH [13:1 |lnone |[3D destination pitch in multiples of@ixels. |

© 2008 Advanced Micro Devices, Inc.
Proprietary 138

AMDA1

Revision 12 February 3, 2008

|CB:RB3D_ABLENDCNTL - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4e08 |

|DESCRIPTION: Alpha Blend Control for Alpha Channel. Pipelined through the blender. |

[Field Name

|Bits

|Default

| Description |

COMB_FCN

14:12

none

Combine Function , Allows modification of how the
SRCBLEND and DESTBLEND are combined.

POSSIBLE VALUES:

00- Add and Clamp

01- Add but no Clamp

02 - Subtract Dst from Src, and Clamp

03- Subtract Dst from Src, and don’t Clamp

04 - Minimum of Src, Dst (the src and dst blend
functions are forced to D3D_ONE)

05- Maximum of Src, Dst (the src and dst blend
functions are forced to D3D_ONE)

06 - Subtract Src from Dst, and &@hp

07 - Subtract Src from Dst, and don’t Clamp

SRCBLEND

21:16

none

Source Blend Function , Alpha blending function (SR

POSSIBLE VALUES:
00- RESERVED
01- D3D_ZERO
02- D3D_ONE
03- D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA
06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DESTCOLOR
10- D3D_INVDESTCOLOR
11- D3D_SRCALPHASAT
12- D3D_BOTHSRCALPHA
13- D3D_BOTHINVSRCALPHA
14 - RESERVED
15- RESERVED
16 - RESERVED
17 - RESERVED
18- RESERVED
19- RESERVED
20- RESERVED
21- RESERVED
22- RESERVED
23- RESERVED
24- RESERVED
25- RESERVED
26- RESERVED
27- RESERVED
28- RESERVED
29- RESERVED
30- RESERVED

© 2008 Advanced Micro Devices, Inc.
Proprietary

139

AMDA1

Revision 12

February 3, 2008

31- RESERVED
32-GL_ZERO

33-GL_ONE

34-GL_SRC_COLOR

35- GL_ONE_MINUS_SRC_COLOR
36-GL_DST_COLOR

37- GL_ONE_MINUS_DST_COLOR
38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42- GL_SRC_ALPHA_SATURATE
43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR

45- GL_CONSTANT_ALPHA

46 - GL_ONE_MINUS_CONSTANT_ALPHA

47 - RESERVED
48 - RESERVED
49 - RESERVED
50- RESERVED
51- RESERVED
52- RESERVED
53- RESERVED
54 - RESERVED
55- RESERVED
56 - RESERVED
57- RESERVED
58- RESERVED
59- RESERVED
60- RESERVED
61- RESERVED
62- RESERVED
63 - RESERVED

DESTBLEND

29:24

none

POS3BLE VALUES:

00- RESERVED

01- D3D_ZERO

02- D3D_ONE
03-D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA

06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DEST@®LOR
10- D3D_INVDESTCOLOR
11- RESERVED

12- RESERVED

13- RESERVED

14 - RESERVED

15- RESERVED

Destination Blend Function , Alpha blending function
(DST).

© 2008 Advanced Micro Devices, Inc.
Proprietary

140

AMDA1

Revision 12 February 3, 2008

16 - RESERVED
17 - RESERVED

18- RESERVED

19- RESERVED

20- RESERVED

21- RESERVED

22- RESERVED

23- RESERVED

24- RESERVED

25- RESERVED

26- RESERVED

27- RESERVED

28- RESERVED

29- RESERVED

30- RESERVED

31- RESERVED

32-GL_ZERO

33-GL_ONE

34-GL_SRC_COLOR

35- GL_ONE_MINUS_SRC_COLOR
36- GL_DST_COLOR

37- GL_ONE_MINUS_DST_COLOR
38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42 - RESERVED

43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48 - RESERVED

49 - RESERVED

50- RESERVED

51- RESERVED

52- RESERVED

53- RESERVED

54- RESERVED

55- RESERVED

56- RESERVED

57- RESERVED

58- RESERVED

59- RESERVED

60- RESERVED

61- RESERVED

62- RESERVED

63- RESERVED

|CB:RB3D_BLENDCNTL - [R/W] - 32 hits - Access: 8/16/32. MMReg:0x4e04 |

|DESCRIPTION: Alpha Blend Control for Color Channels. Pipelined through the blender. |

© 2008 Advanced Micro Devices, Inc.

Proprietary

141

AMDA1

Revision 12 February 3, 2008

[Field Name

|Bits

“Default

| Description

ALPHA_BLEND_ENABLE

0

0x0

Allow alpha blending with the destition.

POSSIBLE VALUES:
00- Disable
01- Enable

SEPARATE_ALPHA_ENABLE

0x0

Enables use of RB3D_ABLENDCNTL

POSSIBLE VALUES:
00- Disabled (Use RB3D_BLENDCNTL)
01- Enabled (Use RB3D_ABLENDCNTL)

READ_ENABLE

0ox1

When blenthg is enabled, this enables memory read
Memory reads will still occur when this is disabled if
they are for reasons not related to blending.

POSSIBLE VALUES:
00- Disable reads
01- Enable reads

DISCARD_SRC_PIXELS

5:3

0x0

Discard pixelsvhen blending is enabled based on the
color.

POSSIBLE VALUES:
00- Disable
01- Discard pixels if src alpha <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
02 - Discard pixels if src color <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
03 - Discard pixels if src argb <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
04 - Discard pixels if src alpha >=
RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
05 - Discard pixels if src color >=
RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
06 - Discard pixelsf src argb >=
RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
07 - (reserved)

COMB_FCN

14:12

none

Combine Function , Allows modification of how the
SRCBLEND and DESTBLEND are combined.

POSSIBLE VALUES:

00- Add and Clamp

01- Add but no Clamp

02 - Subtract Dst from Src, and Clamp

03 - Subtract Dst from Src, and don’t Clamp

04 - Minimum of Src, Dst (the src and dst blend
functions are forced to D3D_ONE)

05 - Maximum of Src, Dst (the src and dst blend
functions are fared to D3D_ONE)

06 - Subtract Src from Dst, and Clamp

07 - Subtract Src from Dst, and don’t Clamp

© 2008 Advanced Micro Devices, Inc.
Proprietary

142

AMDA1

Revision 12 February 3, 2008

SRCBLEND

21:16

none

Source Blend Function , Alpha blending function (SR

POSSIBLE VALUES:

00- RESERVED
01- D3D_ZERO

02-D3D_ONE
03-D3D_SRCCOLOR

04- D3D_INVSRCCOLOR

05- D3D_SRCALPHA

06- D3D_INVSRCALPHA

07- D3D_DESTALPHA

08- D3D_INVDESTALPHA

09- D3D_DESTCOLOR

10- D3D_INVDESTCOLOR

11- D3D_SRCALPHASAT

12- D3D_BOTHSRCALPHA

13- D3D_BOTHINVSRCALPHA

14 - RESERVED

15- RESERVED

16 - RESERVED

17 - RESERVED

18- RESERVED

19- RESERVED

20- RESERVED

21- RESERVED

22- RESERVED

23- RESERVED

24- RESERVED

25- RESERVED

26- RESERVED

27- RESERVED

28- RESERVED

29- RESERVED

30- RESERVED

31- RESERVED

32-GL_ZERO

33-GL_ONE
34-GL_SRC_COLOR

35- GL_ONE_MINUS_SRC_COLOR
36-GL_DST_COLOR
37-GL_ONE_MINUS_DST_COLOR
38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42- GL_SRC_ALPHA_SATURATE
43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48 - RESERVED

49- RESERVED

© 2008 Advanced Micro Devices, Inc.
Proprietary

143

AMDA1

Revision 12

February 3, 2008

50- RESERVED
51- RESERVED
52- RESERVED
53- RESERVED
54 - RESERVED
55- RESERVED
56 - RESERVED
57- RESERVED
58 - RESERVED
59- RESERVED
60- RESERVED
61- RESERVED
62 - RESERVED
63- RESERVED

DESTBLEND

29:24

none

Destinaton Blend Function , Alpha blending function

(DST).

POSSIBLE VALUES:
00- RESERVED
01- D3D_ZERO
02-D3D_ONE
03-D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA
06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DESTCOLOR
10- D3D_INVDESTCOLOR
11- RESERVED
12- RESERVED
13- RESERVED
14 - RESERVED
15- RESERVED
16 - RESERVED
17- RESERVED
18- RESERED
19- RESERVED
20- RESERVED
21- RESERVED
22 - RESERVED
23- RESERVED
24 - RESERVED
25- RESERVED
26- RESERVED
27- RESERVED
28- RESERVED
29- RESERVED
30- RESERVED
31- RESERVED
32- GL_ZERO
33-GL_ONE
34-GL_SRC_COLOR

© 2008 Advanced Micro Devices, Inc.
Proprietary

144

AMDA1

Revision 12

February 3, 2008

35- GL_ONE_MINUS_SRC_COLOR
36-GL_DST_COLOR
37-GL_ONE_MINUS_DST_COLOR
38-GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA

42 - RESERVED

43- GL_CONSTANT_COLOR
44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA

47 - RESERVED
48 - RESERVED
49 - RESERVED
50- RESERVED
51- RESERVED
52- RESERVED
53- RESERVED
54 - RESERVED
55- RESERVED
56 - RESERVED
57- RESERVED
58- RESERVED
59- RESERVED
60- RESERVED
61- RESERVED
62- RESERVED
63- RESERVED

SRC_ALPHA_0_NO_READ

30

0x0

Enables source alpha zero performance optimizatiorn
skip reads.

POSSIBLE VALUES:

00- Disable source alpha zero performance
optimization to skip reads

01- Enablesource alpha zero performance
optimization to skip reads

SRC_ALPHA_1_NO_READ

31

0x0

Enables source alpha one performance optimization
skip reads.

POSSIBLE VALUES:

00 - Disable source alpha one performance
optimization to skip reads
01- Enable source alpha one performance
optimization to skip reads

MMReg:0x4ea4d

CB:RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD - [R/W] - 32 bits - Access: 8/16/32-

|DESCRIPTION: Discard src pixels greater than or equal to threshold.

|Field Name

||Bits

||Defau|t

||Description

© 2008 Advanced Micro Devices, Inc.

Proprietary

145

AMDH Revision 12 February B, 2008
[BLUE [7:0 |oxFF |[Blue |
|GREEN l15:8 |oxFF | |Green |
IRED [23:16 |oxFF ||Red |
IALPHA [31:24 |oxFF |Alpha |

MMReg:0x4ea0

CB:RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD - [R/W] - 32 bits - Access: 8/16/32-

|DESCRIPTION: Discard src pixels less than or egjuo threshold.

|
|Field Name |Bits |Default |[Description |
[BLUE [7:0 lox0 |[Blue |
|GREEN l15:8 Jox0 |Green |
IRED [23:16 |lox0 |Red |
IALPHA [31:24 Jjox0 |Alpha |

|CB:RBSD_CCTL - [RIW] - 32 bits - Access: 8/16/32: MMReg:0x4e00 |

IDESCRIPTION: Unpipelined.

[Field Name

|Bits|| Defaul{|Description |

NUM_MULTIWRITES

6:5(/0x0 ||A quad is replicated and written to this
many buffers.

POSSIBLE VALUES:

00- 1 buffer. This is the only mode
where the cb processes the end of pac
command.

01- 2 buffers

02 - 3 buffers

03- 4 buffers

CLRCMP_FLIPE_ENABLE

7 ||0x0 Enables equivalent of rage128
CMP_EQ_FLIP color compare mode.
This is used to ensure 3D data does n(
get chromakeyed away by logic in the
backend.

POSSIBLE VALUES:
00 - Disable color compare.
01- Enable color compare.

AA_COMPRESSION_ENABLE

9 |lnone |[Enables AA color compression. Cmask
must also be enabled when aa
compression is enabled. The cache m
be empty before this is changed.

POSSIBLE VALUES:
00 - Disable AA compression
01 - Enable AA compression

© 2008 Advanced Micro Devices, Inc.
Proprietary

146

AM Da Revision 12 February B, 2008

CMASK_ENABLE 10 [jnone ||[Enables use of the cmask ram. The ca
must be empty before this is changed.

POSSIBLE VALUES:
00 - Disable
01- Enable

IReserved |11 Jlox0 |setto 0 |
INDEPENDENT_COLOR_CHANNEL_MASK_ ENABLI|12 [|0x0 Enables indepedent color channel mas
for the MRTs. Disabling this feature wil

cause all the MRTs to use color chann
mask 0.

POSSIBLE VALUES:
00- Disable
01- Enable

WRITE_COMPRESSION_DISABLE 13 |lnone ||Disables write compression.

POSSBLE VALUES:
00 - Enable write compression
01 - Disable write compression

INDEPENDENT_COLORFORMAT_ENABLE 14 ||0x0 Enables independent color format for t
MRTs. Disabling this feature will cause|
all the MRTs to use color format 0.

POSSIBLE VALUES:
00 - Disable
01- Enable

|CB:RBBD_CLRCMP_CLR - [R/IW] - 32 bits - Access: 8/16/32. MMReg:0x4e20 |
IDESCRIPTION: Color Compare Color. Stalls the 2d/3d datapath until it is idle. |
[Field Name |Bits |Default |[Description |

CLRCMP_CLR 310 none Like RB2D_CLRCMP_CLR, but a separate register i
provided to keep 2D and 3D state separate.

|CB:RB3D_CLRCMP_FLIPE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4elc |
|DESCRIPTION: Color Compare Flip. Stalls the 2d/3d datapath until it ikid |
[Field Name |Bits |Default |[Description |

CLRCMP_FLIPE 31:0 none Like RB2D_CLRCMP_FLIPE, but a separate registe
provided to keep 2D and 3D state separate.

|CB:RB3D_CLRCMP_MSK - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x4e24 |
IDESCRIPTION: Color Compare Mask. Stalls the 2d/3d datapath until it is idle. |
|Field Name ||Bits ||Defau|t ||Description |

© 2008 Advanced Micro Devices, Inc.
Proprietary 147

AM Da Revision 12 February B, 2008

CLRCMP_MSK 31:0 none Like RB2D_CLRCMP_CLR, but separate registers
provided to keep 2D and 3D state separate.

|CB:RBSD_COLOROFFSET[O-3] - [R/IW] - 32 bits - Access: 8/16/32- MMReg:0x4e280x4e34 |
IDESCRIPTION: Color Buffer Address Offset of multibuffer 0. Unpipelined. |
|Field Name ||Bits “Default ||Description |

COLOROFFSET 31:5 none 256-bit aligned 3D destination offset address. The ca
must be empty beferthis is changed.

|CB:RB3D_COLORPITCH[O -3] - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4e380x4e44 |

DESCRIPTION: Color buffer format and tiling control for all the multibuffers and the pitch of multibuffer 0.
Unpipelined. The cache must be aynipefore any of the registers are changed.

[Field Name |Bits |Default |[Description |

|COLORPITCH ||13:l ||n0ne ||3D destination pitch in multiples of{@ixels. |

COLORTILE 16 none Denotes whether the 3D destination is in macrotiled
format.

POSSIBLE VALUES:
00 - 3D destination is not macrotiled
01 - 3D destination is macrotiled

COLORMICROTILE 18:17 none Denotes whether the 3D destination is in microtiled
format.

POSSIBLE VALUES:

00- 3D destination is no microtiled

01- 3D destination is mrotiled

02 - 3D destination is square microtiled. Only
available in 1ébit

03 - (reserved)

COLORENDIAN 20:19 none Specifies endian control for the color buffer.

POSSIBLE VALUES:
00- No swap
01- Word swap (2 bytes in 1Bit)
02 - Dword swap (4 bytes in a d#t)
03 - Half-Dword swap (2 16it in a 32bit)

COLORFORMAT 24:21 0x6 3D destination color format.

POSSIBLE VALUES:
00- ARGB10101010
01- UV1010
02- CI8 (2D ONLY)
03- ARGB1555
04- RGB565
05- ARGB2101010
06- ARGB8888

© 2008 Advanced Micro Devices, Inc.
Proprietary 148

AM Da Revision 12 February B, 2008

07 - ARGB32323232

08 - (Reserved)

09-18

10- ARGB16161616
11-YUV422 packed (VYUY)
12-YUV422 packed (YVYU)
13-Uvs8s8

14-110

15- ARGB4444

|CB:RB3D_COLOR_CHANNEL_MASK - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4e0c |

DESCRIPTION: 3D Color Channel Mask. If all the channels used in the current color format are disabled,
the cb will discard all the incominguads. Pipelined through the blender.

[Field Name |Bits |Default |[Description |
BLUE_MASK 0 0x1 mask bit for the blue channel

POSSIBLE VALUES:
00 - disable
01- enable

GREEN_MASK 1 Ox1 mask bit for the green channel

POSSIBLE VALUES:
00 - disable
01- enable

RED_MASK 2 Ox1 mask bit for the red channel

POSSIBLE VALUES:
00- disable
01- enable

ALPHA_MASK 3 0x1 mask bit for the alpha channel

POSSIBLE VALUES:
00- disable
01- enable

BLUE_MASK1 4 Ox1 mask bit for the blue channel of MRT 1

POSSIBLE VALUES:
00 - disable
01- enable

GREEN_MASK1 5 0x1 mask bit for the green channel of MRT 1

POSSIBLE VALUES:
00- disable
01- enable

RED_MASK1 6 0x1 mask bit for the red channef MRT 1

POSSIBLE VALUES:

© 2008 Advanced Micro Devices, Inc.
Proprietary 149

AM Da Revision 12 February B, 2008

00 - disable
01- enable

ALPHA MASK1 7 0x1 mask bit for the alpha channel of MRT 1

POSSIBLE VALUES:
00 - disable
01- enable

BLUE_MASK2 8 0x1 mask bit for the blue channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

GREEN_MASK?2 9 0x1 mask bit for the green channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

RED_MASK2 10 Ox1 mask bit for the red channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

ALPHA MASK2 11 Ox1 mask bit for the alpha channel of MRT 2

POSSIBLE VALUES:
00- disable
01- enable

BLUE_MASK3 12 0x1 mask bit for the blue channel of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

GREEN_MASK3 13 Ox1 mask bit for the green channel of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

RED_MASK3 14 0x1 mask bit for the red channel of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

ALPHA_MASK3 15 0x1 mask bit for thealpha channel of MRT 3

POSSIBLE VALUES:
00 - disable
01- enable

© 2008 Advanced Micro Devices, Inc.
Proprietary 150

AM Da Revision 12 February B, 2008

[CB:RB3D_COLOR_CLEAR_VALUE - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x4el4 |

DESCRIPTION: Clear color that is used when the color mask is set to 00. Unpipelinedrdn this register wit
a 32bit value in ARGB8888 or ARGB2101010 formats, ignoring the fields.

[Field Name |Bits |Default |[Description |
IBLUE |7:0 lnone |lblue clear color |
IGREEN 158 |jnone ||green clear color |
IRED [23:16 |jnone |lred clear color |
IALPHA 31:24 |lnone |lalphaclear color |

[CB:RB3D_COLOR_CLEAR_VALUE_AR - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x46c0 |

DESCRIPTION: Alpha and red clear color values that are used when the color mask is set to 00 in FP16 p
component mode. Unpipelined.

[Field Name |Bits |Default |[Description |
IRED 150 |jnone |lred clear color |
IALPHA [31:16 |none |[alpha clear color |

|CB:RBSD_COLOR_CLEAR_VALUE_GB - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x46¢c4 |

DESCRIPTION: Green and blue clear color values that are used when the calsk s set to 00 in FP16 per
component mode. Unpipelined.

[Field Name |Bits |Default |[Description |
[BLUE [15:0 |jnone |[blue clear color |
IGREEN [31:26 |none ||green clear color |

|CB:R83D_CONSTANT_COLOR - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x4e10 |
|DESCRIPTION: Constant color used by the blender. Pipelined through the blender. |

|Field Name |Bits |Default |[Description |
BLUE 7:0 none blue constant color (For R520, this field is ignored, u
RB3D_CONSTANT_COLOR_GB__BLUE instead)
GREEN 15:8 none green constant éar (For R520, this field is ignored, us
RB3D_CONSTANT_COLOR_GB__GREEN instead
RED 23:16 none red constant color (For R520, this field is ignored, us
RB3D_CONSTANT_COLOR_AR__RED instead)
ALPHA 31:24 none alpha constant color (For R520, this fieldgadred, use
RB3D_CONSTANT_COLOR_AR__ALPHA instead)

|CB:RBBD_CONSTANT_COLOR_AR - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4ef8
|DESCRIPTION: Constant color used by the blender. Pipelined through the blender.

|Field Name |Bits |Default |Description

IRED [15:0 lnone |[red constant color in 0.10 fixed or FP16 format

© 2008 Advanced Micro Devices, Inc.
Proprietary 151

AMDA1

Revision 12

February 3, 2008

[ALPHA

[31:16

[none

lalpha constant color in 0.10 fixed or FP16 format |

|CB:RBSD_CONSTANT_COLOR_GB - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4efc

|DESCRIPTION: Constant color used kiye blender. Pipelined through the blender.

[Field Name |Bits |Default
IBLUE [15:0 |Inone ||blue constant color in 0.10 fixed or FP16 format
IGREEN [31:126 |none ||green constant color in 0.10 fixed or FP16 format

|
|
| Description }
|

[CB:RB3D_DITHER_CTL - [R/W] - 32 hits - Access: 8/16/32. MMReg:0x4e50 |

|DESCRIPTION: Dithering control register. Pipelined through the blender. |

[Field Name

|Bits

| Default

| Description |

DITHER_MODE

1:0

0x0

Dither mode

POSSIBLE VALUES:
00- Truncate
01- Round
02- LUT dither
03 - (reserved)

ALPHA_DITHER_MODE

3:2

0x0

POSSIBLE VALUES:
00- Truncate
01- Round
02- LUT dither
03- (reserved)

CB:RB3D_DSTCACHE_CTLSTAT - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4e4c

DESCRIPTION: Destination Color Buffer Cache Control/Status. If the cb is in €2 mode, then a flush or freg
not occur upon a write to this register, but a sync will be immediately sent if one is requested. If both DC_H
and DC_FREE are zero but DC_FINISHase, then a sync will be sent immediatelghe cb will not wait for all
the previous operations to complete before sending the sync. Unpipelined except when DC_FINISH and D
are both set to zero.
|Field Name |Bits |Default |[Description |
DC_FLUSH 1.0 0x0 Setting this bit flushes dirty data from the 3D Dst Ca
Unless the DC_FREE bits are also set, the tags in th
cache remain valid. A purge is achieved by setting b
DC_FLUSH and DC_FREE.
POSSIBLE VALUES:
00- No effect
01 - No effect
02 - Flushes dirty 3D data
03 - Flushes dirty 3D data
DC_FREE 3:2 0x0 Setting this bit invalidates the 3D Dst Cache tags. Uy
the DC_FLUSH bit is also set, the cache lines are ng
written to memory. A purge is achieved by setting bo

© 2008 Advanced Micro Devices, Inc.
Proprietary

152

AM Da Revision 12 February B, 2008

DC_A.USH and DC_FREE.

POSSIBLE VALUES:
00- No effect
01- No effect
02- Free 3D tags
03- Free 3D tags

DC_FINISH 4 0x0 POSSIBLE VALUES:

00- do not send a finish signal to the CP

01 - send a finish signal to the Giter the end of
operation

[CB:RB3D_FIFO_SIZE - [RIW] - 32 bits - Access: 8/16/32° MMReg:0x4ef4 |
[DESCRIPTION: Sets the fifo sizes |
[Field Name |Bits |Default |[Description |
OP_FIFO_SIZE 1:0 0x0 Determines the size of the op fifo

POSSIBLE VALUES:
00- Full size
01-1/2 size
02-1/4 size
03-1/8 size

|CB:RB3D_ROPCNTL - [R/W] - 32 hits - Access: 8/16/32. MMReg:0x4e18 |
[DESCRIPTION: 3D ROP Control. Stalls the 2d/3d datapath until it is idle. |
|Field Name |Bits |Default ||Description |

ROP_ENABLE 2 0x0 POSSIBLE VALUES:
00- Disable ROP. (Forces ROP2 to be 0xC).
01- Enabled

ROP 11:8 none ROP2 code for 3D fragments. This value is replicate
into 2 nibbles to form the equivalent ROP3 code to
control the R®3 logic. These are the GDI ROP2 cod

© 2008 Advanced Micro Devices, Inc.
Proprietary 153

AMDA1

Revision 12 February 3, 2008

10.2 Fog Registers

|FG:FG_ALPHA_FUNC - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4bd4 |

IDESCRIPTION: Alpha Function

|[Field Name

|Bits

||Defau|t “Description |

AF_VAL

7:0

0x0

Specifies the ®it alpha compare valughen
AF_EN_8BIT is enabled

AF_FUNC

10:8

0x0

Specifies the alpha compare function.

POSSIBLE VALUES:
00- AF_NEVER
01-AF_LESS
02- AF_EQUAL
03- AF_LE
04- AF_GREATER
05- AF_NOTEQUAL
06- AF_GE
07- AF_ALWAYS

AF_EN

11

0x0

Enables/Disables alpha compare function.

POSSIBLE VALUES:
00 - Disable alpha function.
01 - Enable alpha function.

AF_EN_8BIT

12

0x0

Enable 8bit alpha compare function.

POSSIBLE VALUES:
00 - Default 1Gbit alpha compare.
01- Enable 8bit alpha compare.

AM_EN

16

0x0

Enables/Disables alpfta-mask function.

POSSIBLE VALUES:
00 - Disable alpha to mask function.
01- Enable alpha to mask function.

AM_CFG

17

0x0

Specfies number of sytixel samples for alphto-mask
function.

POSSIBLE VALUES:
00- 2/4 subpixel samples.
01 - 3/6 subpixel samples.

DITH_EN

20

0x0

Enables/Disables RGB Dithering (Not supported in
R520)

POSSIBLE VALUES:
00 - Disable Dithering
01- Enable Dithering.

ALP_OFF_EN

24

[loxo

||Alpha offset enable/disable (Not supported in R520)|

© 2008 Advanced Micro Devices, Inc.

Proprietary

154

AM Da Revision 12 February B, 2008

POSSIBLE VALUES:

00 - Disables alpha offset of 2 (default r300 & rv3
behavior)

01 - Enables offset of 2 on alpha coming in from
us

DISCARD_ZERO_MASK_QUAD|25 0x0 Enable/Disable discard zero mask coverage quad tg

POSSIBLE VALUES:
00- No discard of zero coverage mask quads
01- Discard zero coverage mask quads

FP16 ENABLE 28 0x0 Enables/Disables FP16 alpha function

POSSIBLE VA UES:

00 - Default 16bit alpha compare and alp@mask
function

01- Enable FP16 alpha compare and alfrenask
function

|FG:FG_ALPHA_VALUE - [R/IW] - 32 bits - Access: 8/16/32. MMReg:0x4be0 |
[DESCRIPTION: Alpha Compare Value |

[Field Name |Bits |Default |[Description |
AF_VAL 15:0 0x0 Specifies the alpha compare value, 0.10 fixed or FP
format

[FG:FG_DEPTH_SRC - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4bd8 |
[DESCRIPTION: Where does depth come from? |

[Field Name |[Bits |Default |[Description |
DEPTH_SRC 0 0x0 POSSIBLE VALUES:
00 - Depth comes from scan converter as plane
equation.
01 - Depth comes from shader as four discrete va

[FG:FG_FOG_BLEND - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x4bc0 |
IDESCRIPTION: Fog Blending Enable |
|Field Name ||Bits ||Defau|t ||Description |
ENABLE 0 0x0 Enable for fog blending

POSSIBLE VALUES:
00 - Disables fog (output matches input color).
01- Enables fog.

FN ||2:1 ||0x0 ||Fog generation function |

© 2008 Advanced Micro Devices, Inc.
Proprietary 155

AM Da Revision 12 February B, 2008

POSSIBLE VALUES:
00- Fog function is linear
01 - Fog function is exponential
02 - Fog function is exponential squared
03- Fog is derived from constant fog factor

|FG:FG_FOG_COLOR_B - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x4bd0 |
IDESCRIPTION: Blue Component of Fog Color |
[Field Name |Bits |Default |[Description |
IBLUE |9:0 0x0 ||Blue component of fog color; (0.10) fixed format. |

[FG:FG_FOG_COLOR_G - [RIW] - 32 bits - Access: 8/16/32 MMReg:0x4bcc |
[DESCRIPTION: Green Component of gaColor |

[Field Name |Bits |Default |[Description
IGREEN [9:0 lox0 ||Green component of fog color; (0.10) fixed format.

[FG:FG_FOG_COLOR_R - [RIW] - 32 bits - Access: 8/16/32 MMReg:0x4bc8 |
IDESCRIPTION: Red Component of Fog Color |

[Field Name |Bits |Default |[Description
IRED [9:0 lox0 |Red component of fog color; (0.10) fixed format.

|FG:FG_FOG_FACTOR - [RIW] - 32 bits - Access: 8/16/32. MMReg:0x4bc4 |
IDESCRIPTION: Constant Factor for Fog Blending |

|Field Name |Bits |Default |[Description
[FACTOR [|9:0 lox0 ||Constant fog factor; fixed (0.10) format.

© 2008 Advanced Micro Devices, Inc.
Proprietary 156

AM Da Revision 12 February B, 2008

10.3 Geometry Assembly Registers

|GA:GA_COLOR_CONTROL - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x4278 |
IDESCRIPTION: Specifies per RGB or Alpha shading method. |
|Field Name ||Bits “Default ||Description |
RGBO_SHAONG 1:0 0x0 Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

ALPHAO_SHADING 3:2 0x0 Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

RGB1_SHADING 5:4 0x0 Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

ALPHA1_ SHADING 7:6 0x0 Spedfies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01 - Flat shading
02 - Gouraud shading

RGB2_SHADING 9:8 0x0 Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01 - Flat shading
02 - Gouraud shading

ALPHA2_SHADING 11:10 0x0 Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

RGB3_SHADING 13:12 0x0 Specifies solid,l&t or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

© 2008 Advanced Micro Devices, Inc.
Proprietary 157

AMDA1

Revision 12 February 3, 2008

ALPHA3_SHADING

15:14

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01 - Flat shading
02 - Gouraud shading

PROVOKING_VERTEX

17:16

0x0

Specifies, for flat shaded polygons, which vertex hol
the polygon color.

POSSIBLE VALUES:
00 - Provoking is first vertex
01 - Provoking is second vertex
02 - Provoking s third vertex
03- Provoking is always last vertex

[GA:GA_COLOR_CONTROL_PS3 -

[R/W] - 32 hits - Access: 8/16/32- MMReg:0x4258 |

|DESCRIPTION: Specifies color properties and mappings of textures. |

[Field Name

|Bits

| Default

||Description |

TEXO_SHADING_PS3

1:0

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX1_SHADING_PS3

3:2

0x0

Specifies undefined(0), flat(1nd Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01 - Flat shading
02 - Gouraud shading

TEX2_SHADING_PS3

54

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLEVALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX3_SHADING_PS3

7.6

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01 - Flatshading
02 - Gouraud shading

TEX4_SHADING_PS3

9:8

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

© 2008 Advanced Micro Devices, Inc.
Proprietary

158

AM Da Revision 12 February B, 2008

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX5_SHADING_F53 11:10 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX6_SHADING_PS3 13:12 0x0 Specifies undefined(0), flat(1) and @aud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX7_SHADING_PS3 15:14 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX8_SHADING_PS3 17:16 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flatshading
02 - Gouraud shading

TEX9 SHADING_PS3 19:18 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01 - Flat shading
02 - Gouraud shading

TEX10_SHADING PS3 21:20 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for tex10 components.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

COLORO_TEX_OVERRIDE 25:22 0x0 Specifies if each color shautome from a texture and
which one.

© 2008 Advanced Micro Devices, Inc.
Proprietary 159

AMDA1

Revision 12 February 3, 2008

POSSIBLE VALUES:
00- No override
01 - Stuff texture 0
02 - Stuff texture 1
03 - Stuff texture 2
04 - Stuff texture 3
05 - Stuff texture 4
06 - Stuff texture 5
07 - Stuff texture 6
08 - Stuff texture 7
09 - Stuff texture 8/C2
10 - Stuff texture 9/C3

COLOR1_TEX_OVERRIDE

29:26

0x0

Specifies if each color should come from a texture a
which one.

POSSIBLE VALUES:
00 - No override
01 - Stuff texture 0
02 - Stuff texture 1
03 - Stuff texture 2
04 - Stuff texture 3
05 - Stuff texture 4
06 - Stuff texture 5
07 - Stuff texture 6
08 - Stuff texture 7
09 - Stuff texture 8/C2
10 - Stuff texture 9/C3

[GA:GA_ENHANCE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4274 |

IDESCRIPTION: GA Enhancement Register

[Field Name

|Bits

| Default

| Description |

DEADLOCK_CNTL

0

0x0

TCL/GA Deadlock control.

POSSIBLE VALUES:

00- No effed.

01- Prevents TCL interface from deadlocking on
side.

FASTSYNC_CNTL

ox1

Enables Fast register/primitive switching

POSSIBLE VALUES:

00- No effect.

01 - Enables higkperformance register/primitive
switching.

REG_READWRITE

0x0

R520+: When set, GA supports simultaneous registe
reads & writes

POSSIBLE VALUES:

© 2008 Advanced Micro Devices, Inc.
Proprietary

160

AMDA1

Revision 12

February 3, 2008

00- No effect.
01 - Enables GA support of simultaneous register
reads and writes.

REG_NOSTALL 3

0x0

POSSIBLE VALUES:

00- No effect.

01- Enables GA support of rstall reads for registe
read back.

|GA:GA_FIFO_CNTL - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4270 |

|DESCRIPTION: GA Input fifo high water marks

[Field Name |Bits |Default |[Description |

VERTEX_FIFO 2:0 0x0 Number of wods remaining in input vertex fifo before
asserting nearly full

INDEX_FIFO 5:3 0x0 Number of words remaining in input primitive fifo
before asserting nearly full

REG_FIFO 13:6 0x0 Number of words remaining in input register fifo befg
asserting nearly fu

IGA:GA_FILL_A - [R/W] - 32 bits

- Access: 8/16/32. MMReg:0x422c

[IDESCRIPTION: Alpha fill color

[Field Name |Bits

| Default

| Description

[COLOR_ALPHA [31:0

lox0

|[FP20 format for alpha fill.

IGA:GA_FILL_ B - [R/W] - 32 bits

- Access: 8/16/322 MMReg:0x4228

[DESCRIPTION: Blue fill color

[Field Name |Bits

| Default

||Description

|[COLOR_BLUE [31:0

lox0

||FP20 format for blue fill.

IGA:GA_FILL_G - [R/W] - 32 bits

- Access: 8/16/32. MMReg:0x4224

IDESCRIPTION: Green fill color

|Fie|d Name ||Bits

| Default

|COLOR_GREEN [31:0

lox0

|
|
| Description |
||FP20 format for green fill. |

IGA:GA_FILL_R - [R/W] - 32 hits

- Access: 8/16/32: MMReg:0x4220

[IDESCRIPTION: Red fill color

[Field Name |Bits

| Default

||[Description

|[COLOR_RED [31:0

[[ox0

||FP20 format for red fill.

© 2008 Advanced Micro Devices, Inc.
Proprietary

161

Revision 12

AMDA1

February 3, 2008

|GA:GA_FOG_OFFSET - [RIW] - 32 bits - Access: 8/16/322 MMReg:0x4298

|DESCRIPTION: Specifies the offset to apply to fog.

[Field Name |Bits |Default |[Description

I\VALUE 3.0 Jjox0 ||32b SPFP scale value.

[GA:GA_FOG_SCALE - [R/W] - 32 bits - Access8/16/32 - MMReg:0x4294

|DESCRIPTION: Specifies the scale to apply to fog.

[Field Name

|Bits

“Default

| Description

IVALUE

|[31:0

lox0

||32b SPFP scale value.

|GA:GA_IDLE - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x425c

reset asserted.

DESCRIPTION: Returns idle stats of various G3D block, captured when GA_IDLE written or when hard or

[Field Name |Bits |Default |[Description |
[PIPE3_Z_IDLE [0 lox0 |[Idle status of physical pipe 3 Z unit |
IPIPE2_Z_IDLE I l0x0 |[Idle status of physical pipe 2 Z unit |
[PIPE3_CB_DLE 2 lox0 |[Idle status of physical pipe 3 CB unit |
IPIPE2_CB_IDLE 13 l0x0 |[Idle status of physical pipe 2 CB unit |
IPIPE3_FG_IDLE |4 lox0 |[Idle status of physical pipe 3 FG unit |
IPIPE2_FG_IDLE |5 lox0 |[Idle status of physical pipe 2 FG unit |
IPIPE3_US_IDLE 6 lox0 |[Idle satus of physical pipe 3 US unit |
[PIPE2_US_IDLE 7 lox0 |[Idle status of physical pipe 2 US unit |
IPIPE3_SC_IDLE 8 lox0 |[Idle status of physical pipe 3 SC unit |
[PIPE2_SC_IDLE |l lox0 |[Idle status of physical pipe 2 SC unit |
IPIPE3_RS_IDLE |10 l0x0 |[Idle status of physid pipe 3 RS unit |
IPIPE2_RS_IDLE 11 lox0 |[Idle status of physical pipe 2 RS unit |
[PIPE1_Z_IDLE [12 lox0 |[Idle status of physical pipe 1 Z unit |
IPIPEO_Z_IDLE 13 lox0 |[Idle status of physical pipe 0 Z unit |
IPIPE1_CB_IDLE |14 lox0 |[Idle status of physical pipe 1 CB tini |
IPIPEO_CB_IDLE |15 lox0 |[Idle status of physical pipe 0 CB unit |
IPIPE1_FG_IDLE |16 lox0 |[Idle status of physical pipe 1 FG unit |
IPIPEO_FG_IDLE [17 |loxo |[Idle status of physical pipe 0 FG unit |
IPIPE1_US_IDLE |18 lox0 |[Idle status of physical pipe 1 US unit |
[PIPEO_USIDLE |19 loxo |[Idle status of physical pipe 0 US unit |
IPIPE1_SC_IDLE |20 lox0 |[Idle status of physical pipe 1 SC unit |
[PIPEO_SC_IDLE [21 loxo |[Idle status of physical pipe 0 SC unit |
IPIPE1_RS_IDLE [22 lox0 |[Idle status of physical pipe 1 RS unit |
IPIPEO_RS_IDLE 23 lox0 |[Idle status of physical pipe 0 RS unit |

© 2008 Advanced Micro Devices, Inc.

Proprietary

162

AM Da Revision 12 February B, 2008

[SU_IDLE |24 |[ox0 |[Idle status of SU unit |
|GA_IDLE |25 0x0 |[Idle status of GA unit |
IGA_UNIT2_IDLE 26 lox0 |[Idle status of GA unit2 |

|GA:GA_LINE_CNTL - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4234 |
[DESCRIPTION: Line control |

[Field Name |Bits |Default |Description |

WIDTH 15:0 0x0 1/2 width of line, in subpixels (1/12 or 1/16 only, evel
8b subprecision); (16.0) fixed format.

END_TYPE 17:16 0x0 Specifies how ends of lines should be drawn.

POSSIBLE VALUES:

00- Horizontal

01- Vertical

02 - Square (horizontal or vertical depending upo
slope)

03 - Computed (perpendicular to slope)

SORT 18 0x0 R520+: When enabled, all lines are sorted so that V(
vertex with smallest X, or if X equal, sibest Y.

POSSIBLE VALUES:
00- No sorting (default)
01- Sort on minX than MinY

|GA:GA_LINE_SO - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4264 |
[DESCRIPTION: S Texture Coordinate Value for Vertex 0 of Line (stuff texturies AA) |
[Field Name |[Bits |Default |[Description |

SO 31:.0 0x0 S texture coordinate value generated for vertex 0 of
antialiased line; 3bit IEEE float format. Typical 0.0.

|GA:GA_LINE_Sl - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x4268 |
|DESCRIPTIO N: S Texture Coordinate Value for Vertex 1 of Lines (V2 of parallelogratuff textures- i.e. AA)|
[Field Name |Bits |Default |[Description |

S1 31:.0 0x0 S texture coordinate value generated for vertex 1 of
antialiased line; 3bit IEEE float format. Tyal 1.0.

IGA:GA_LINE_STIPPLE_CONFIG - [R/W] - 32 hits - Access: 8/16/32: MMReg:0x4238 |
|DESCRIPTION: Line Stipple configuration information. |

|Field Name |Bits |Default |[Description
ILINE_RESET [1:0 lox0 ||Specify type of reset to use for stipple acclatian.

© 2008 Advanced Micro Devices, Inc.
Proprietary 163

AM Da Revision 12 February B, 2008

POSSIBLE VALUES:
00- No reseting
01- Reset per line
02 - Reset per packet

STIPPLE_SCALE 31:2 0x0 Specifies, in truncated (30b) floating point, scale to g
to generated texture coordinates.

|GA:GA_LINE_STIPPLE_VALUE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4260 |
[DESCRIPTION: Current value of stipple accumulator. |
[Field Name |Bits |Default |[Description |

STIPPLE_VALUE 31:.0 0x0 24b Integer, measuring stipple accumulation in subp
(1/12 or 1/16, even in 8b prismon). (note: field is 32b,
but only lower 24b used)

|GA:GA_OFFSET - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4290 |
IDESCRIPTION: Specifies x & y offsets for vertex data after conversion to FP. |

[Field Name |Bits |Default |[Description |

X _OFFSET 15.0 0x0 Specifies X offset in S15 format (subpixelsl/12 or
1/16, even in 8b subprecision).

Y_OFFSET 31:16 0x0 Specifies Y offset in S15 format (subpixelsl/12 or
1/16, even in 8b subprecision).

|GA:GA_POINT_MINMAX - [RIW] - 32 bits - Access:8/16/32 - MMReg:0x4230 |
|DESCRIPTION: Specifies maximum and minimum point & sprite sizes for per vertex size specification. |

[Field Name |Bits |Default |[Description |

MIN_SIZE 15:0 0x0 Minimum point & sprite radius (in subsamples) size t
allow.

MAX_SIZE 31:16 0x0 Maximum point & sprite radius (in subsamples) size
allow.

|GA:GA_POINT_S0 - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4200 |
|DESCRIPTION: S Texture Coordinate of Vertex 0 for Point texture stuffing (LLC) |
|Field Name ||Bits ||Defau|t ||Descr'ption |

SO 31.0 0x0 S texture coordinate of vertex O for point-Bi2 IEEE
float format.

IGA:GA_POINT_S1 - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4208 |
|DESCRIPTION: S Texture Coordinate of Vertex 2 for Point texture stuffing (URC) |

© 2008 Advanced Micro Devices, Inc.
Proprietary 164

AM Da Revision 12 February 3, 2008
|Field Nane ||Bits “Default ||Description
S1 31:0 0x0 S texture coordinate of vertex 2 for point;-Bi2 IEEE

float format.

IGA:GA_POINT_SIZE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x421c |

|DESCRIPTION: Dimensions for Points

|

|Field Name |Bits |Default ||Descrption |

HEIGHT 15:0 0x0 1/2 Height of point; fixed (16.0), subpixel format (1/1
or 1/16, even if in 8b precision).

WIDTH 31:16 0x0 1/2 Width of point; fixed (16.0), subpixel format (1/12
1/16, even if in 8b precision)

[GA:GA_POINT_TO - [R/W] - 32hits - Access: 8/16/32- MMReg:0x4204 |

|DESCRIPTION: T Texture Coordinate of Vertex 0 for Point texture stuffing (LLC) |

[Field Name

|Bits

| Default

| Description |

TO

31:0

0x0

T texture coordinate of vertex O for point;-BR IEEE
float format.

|GA:GA_POINT_T1 - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x420c |

|DESCRIPTION: T Texture Coordinate of Vertex 2 for Point texture stuffing (URC) |

[Field Name

|Bits

| Default

| Description |

T1

31:.0

0x0

T texture coordinate of vertex 2 for point;-B22 IEEE
float format.

|GA:GA_POLY_MODE - [R/IW] - 32 bits - Access: 8/16/32- MMReg:0x4288 |

|DESCRIPTION: Polygon Mode

[Field Name

|Bits

| Default

| Description |

POLY_MODE

1:0

0x0

Polygon mode enable.

POSSIBLE VALUES:

00 - Disable poly mode (render triangles).

01 - Dual mode (send 2 sets of 3 polys with speci
poly type).

02 - Reserved

FRONT_PTYPE

6:4

0x0

Specifies how to render froffédicing polygons.

POSSIBLE VALUES:
00 - Draw points.
01- Draw lines.

02 - Draw triangles
03- Reserved 37.

© 2008 Advanced Micro Devices, Inc.
Proprietary

165

AMDA1

Revision 12 February 3, 2008

BACK_PTYPE

9:7

0x0

Specifies how to render bad#cing polygons.

POSSIBLE VALUES:
00- Draw points.
01- Draw lines.
02 - Draw triangles.
03- Reserved 37.

[GA:GA_ROUND_MODE - [R/W] - 32hits -

Access: 8/16/32: MMReg:0x428c |

|DESCRIPTION: Specifies the rouding mode for geometry & color SPFP to FP conversions. |

|[Field Name

|Bits

| Default

| Description |

GEOMETRY_ROUND

1:0

0x0

Trunc (0) or round to nearest (1) for geometry (XY).

POSSIBLE VALUES:
00- Round to trunc
01- Round to nearest

COLOR_ROUND

3:2

0x0

When set, FP32 to FP20 using round to nearest;
otherwise trunc

POSSIBLE VALUES:
00- Round to trunc
01- Round to nearest

RGB_CLAMP

0x0

Specifies SPFP colalamp range of [0,1] or FP20 for
RGB.

POSSIBLE VALUES:
00- Clamp to [0,1.0] for RGB
01-RGB is FP20

ALPHA_CLAMP

0x0

Specifies SPFP alpha clamp range of [0,1] or FP20.

POSSIBLE VALUES:
00- Clamp to [0,1.0] for Alpha
01- Alpha is FP20

GEOMETRY_MASK

9:6

0x0

4b negative polarity mask for subpixel precision.
Inverted version gets ANDed with subpixel X, Y mas

|GA:GA_SOLID_BA - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4280

|DESCRIPTION: Specifies blue & alphaomponents of fill coloy- S312 format- Backwards comp.

|[Field Name |Bits |Default |[Description
I[COLOR_ALPHA [15:0 lox0 [Component alpha value. (S3.12)
[COLOR_BLUE [31:26 |jox0 [Component blue value. (S3.12)

[GA:GA_SOLID_RG - [RIW] - 32 bits - Access: 8/162 - MMReg:0x427c |

© 2008 Advanced Micro Devices, Inc.
Proprietary

166

AM Da Revision 12 February B, 2008

|DESCRIPTION: Specifies red & green components of fill colo6312 format- Backwards comp.

|
|Field Name |Bits |Default |[Description |
|[COLOR_GREEN 150 Jjox0 [Component green value (S3.12). |
ICOLOR_RED 31:16 ox0 |[Component red value (S3.12). |

[GA:GA_TRIANGLE_STIPPLE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4214 |

DESCRIPTION: Specifies amount to shift integer position of vertex (screen space) before converting to flo
triangle stipple.

|Field Name |Bits |Default |[Description |
IX_SHIFT [3:0 lox0 ||Amount to shift x position before conversion to SPFH
[Y_SHIFT [19:16]jox0 ||Amount to shift y position before conversion to SPFH

|GA:GA_US_VECTOR_DATA - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4254 |
|DESCRIPTION: Data register fodoading US instructions and constants |

|[Field Name |Bits |Default |[Description
IDATA |[31:0 lox0 132 bit dword

|GA:GA_US_VECTOR_INDEX - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4250 |
|DESCRIPTION: Used to load US instructions and constants |
[Field Name |[Bits |Default |[Description |

INDEX 8:0 0x0 Instruction (TYPE == GA_US_VECTOR_INST) or
constant (TYPE == GA_US_VECTOR_CONST)
number at which to start loading. The GA will then
expect n*6 (instructions) or n*4 (constants) writes to
GA_US_VECTOR_DATA. The GA Wi self-increment
until this register is written again. For instructions, th
GA expects the dwords in the following order:
US_CMN_INST, US_ALU_RGB_ADDR,
US_ALU_ALPHA_ADDR, US_ALU_ALPHA,
US_RGB_INST, US_ALPHA_INST, US_RGBA_INS
For constants, the GA expgsdhe dwords in RGBA
order.

TYPE 16 0x0 Specifies if the GA should load instructions or constg

POSSIBLE VALUES:

00- Load instructions INDEX is an instruction
index

01- Load constantsINDEX is a constant index

CLAMP 17 0x0 POSSBLE VALUES:
00- No clamping of data Default
01- Clamp to }1.0,1.0] constant data

© 2008 Advanced Micro Devices, Inc.
Proprietary 167

AMDA1

Revision 12 February 3, 2008

10.4 Graphics Backend Registers

|GB:GB_AA_CONFIG - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4020 |

|DESCRIPTION: Specifies the graphics pipeline diguration for antialiasing. |

|Field Name |Bits |Default |[Description |
AA _ENABLE 0 0x0 Enables antialiasing.
POSSIBLE VALUES:
00 - Antialiasing disabled(def)
01 - Antialiasing enabled
NUM_AA_SUBSAMPLES 2:1 0x0 Specifies the number of subsampiesise while

antialiasing.

POSSIBLE VALUES:
00- 2 subsamples
01- 3 subsamples
02- 4 subsamples
03- 6 subsamples

|GB:GB_ENABLE - [RIW] - 32 bits - Access: 8/16/32: MMReg:0x4008 |

|DESCRIPTION: Specifies top of Ramt pipe specific enable controls. |

[Field Name

|Bits

| Default

||Description |

POINT_STUFF_ENABLE

0

0x0

Specifies if points will have stuffed texture coordinate

POSSIBLE VALUES:
00- Disable point texture stuffing.
01- Enable point texture stuffg.

LINE_STUFF_ENABLE

0x0

Specifies if lines will have stuffed texture coordinateg

POSSIBLE VALUES:
00- Disable line texture stuffing.
01- Enable line texture stuffing.

TRIANGLE_STUFF_ENABLE

0x0

Specifies if triangles will have dffied texture
coordinates.

POSSIBLE VALUES:
00 - Disable triangle texture stuffing.
01- Enable triangle texture stuffing.

STENCIL_AUTO

5:4

0x0

Specifies if the auto dec/inc stencil mode should be
enabled, and how.

POSSIBLE VALUES:

00 - Disable stencil auto inc/dec (def).

01 - Enable stencil auto inc/dec based on triangle
cwi/ccw, force into dzy low bit.

02- Force 0 into dzy low bit.

© 2008 Advanced Micro Devices, Inc.
Proprietary

168

AM Da Revision 12 February B, 2008

TEXO0_SOURCE 17:16 0x0 Specifies the sources of the texture coordinates for €
texture

POSSIBLE VALUES:
00 - Replicate VAP source texture coordinates
(S.T.[R.Q]).
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX1_SOURCE 19:18 0x0 Specifies the sources of thextigre coordinates for eact
texture.

POSSIBLE VALUES:
00- Replicate VAP source texture coordinates
(S,T.,[R.Q).
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX2_SOURCE 21:20 0x0 Specifies the sources of the texture coordinates for €
texture.

POSSIBLE VALUES:
00- Replicate VAP source texture coordinates
(S.T.[R.Q]).
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordites (S,T,R).

TEX3_SOURCE 23:22 0x0 Specifies the sources of the texture coordinates for €
texture.

POSSIBLE VALUES:
00- Replicate VAP source texture coordinates
(S,T.,[R.Q)).
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX4_SOURCE 25:24 0x0 Specifies the sources of the texture coordinates for €
texture.

POSSIBLE VALUES:
00- Replicate VAP source texture coordinates
(S,T.,[R.Q)).
01 - Stuff with source texte coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX5_SOURCE 27:26 0x0 Specifies the sources of the texture coordinates for €
texture.

POSSIBLE VALUES:
00- Replicate VAP source texture coordinates
(S, T.[R.Q]).
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX6_SOURCE 29:28 0x0 Specifies the sources of the texture coordinates for €
texture.

© 2008 Advanced Micro Devices, Inc.
Proprietary 169

AMDA1

Revision 12 February 3, 2008

POSSIBLE VALUES:
00 - Replicate VAP sourctexture coordinates
(S,T.[R.QD.
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

TEX7_SOURCE

31:30

0x0

Specifies the sources of the texture coordinates for €
texture.

POSSIBLE VALUES
00 - Replicate VAP source texture coordinates
(S,T.[R.QD.
01 - Stuff with source texture coordinates (S,T).
02 - Stuff with source texture coordinates (S,T,R)

[GB:GB_FIFO_SIZE - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x4024 |

IDESCRIPTION: Specifies the sizes of the various FIFO's in the sc/rs/us. This register must be the first ong

[Field Name

|Bits

| Default

||Description |

SC_IFIFO_SIZE

1:0

0x0

Size of scan converter input FIFO (XYZ)

POSSIBLE VALUES:
00- 32 words
01- 64 words
02 - 128 words
03- 256 words

SC_TZFIFO_SIZE

3:2

0x0

Size of scan converter tag-pipe Z FIFO

POSSIBLE VALUES:
00- 16 words
01- 32 words
02 - 64 words
03- 128 words

SC_BFIFO_SIZE

5.4

0x0

Size of scan converter input FIFO (B)

POSSIBLE VALUES:
00- 32 words
01- 64 words
02- 128 words
03- 256 words

RS_TFIFO_SIZE

7.6

0x0

Size of ras input FIFO (Texture)

POSSIBLE VALUES:
00- 64 words
01- 128 words
02 - 256 words
03-512 words

RS_CFIFO_SIZE

[0:8

loxo

|[Size of ras input FIFO (Color)

© 2008 Advanced Micro Devices, Inc.

Proprietary

170

AMDA1

Revision 12

February 3, 2008

POSSIBLE VALUES:
00- 64 words
01- 128 words
02 - 256 words
03-512 words

US_RAM_SIZE

11:10

0x0

Size of us RAM

POS3IBLE VALUES:
00- 64 words
01- 128 words
02 - 256 words
03-512 words

US_OFIFO_SIZE

13:12

0x0

Size of us output FIFO (RGBA)

POSSIBLE VALUES:
00- 16 words
01- 32 words
02 - 64 words
03- 128 words

US_WFIFO_SIZE

15:14

0x0

Size of us output FIFO (W)

POSSIBLE VALUES:
00- 16 words
01- 32 words
02 - 64 words

03- 128 words

IRS_HIGHWATER_COL

[18:16

lox0

||High water mark for RS colors’ fife NOT USED

IRS_HIGHWATER_TEX

[21:19

lox0

||High water mark for RS textures’ fileNOT USED

US_OFIFO_HIGHWATER

23:22

0x0

High water mark for US output fifo

POSSIBLE VALUES:
00- 0 words
01- 4 words
02 - 8 words

03-12 words

|US_CUBE_FIFO_HIGHWATEEF|28:24

l0x0

|High water mark for US cube map fifo

|GB:GB_FIFO_SIZE1 - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x4070

|DESCRIPTION: Specifies the sizes of the various FIFO's in the sc/rs.

|

|
Field Name	Bits	Default	[Description			
SC_HIGHWATER_IFIFO	[5:0	[loxo	High waer mark for SC input fifo			
SC_HIGHWATER_BFIFO		11:6		OxO		High water mark for SC input fifo (B)
IRS_HIGHWATER_COL [17:12 lox0 |[High water mark for RS colors® fifo |
[RS_HIGHWATER_TEX [23:18 Jjox0 |High water mark for RS textures’ fifo |

© 2008 Advanced Micro Devices, Inc.
Proprietary

171

Revis

AMDA1

ion 12 February 3, 2008

|GB:GB_MSPOSO - [R/W] - 32 hits -

Access: 8/16/322 MMReg:0x4010 |

|DESCRIPTION: Specifies the position of multisamples 0 through 2 |

[Field Name |Bits |Default |[Description |

MS_XO0 3:0 0x0 Specifies the x and y position (in subpixels) of
multisample 0

MS_YO 7:4 0x0 Specifies the x ang position (in subpixels) of
multisample 0

MS_X1 11:8 0x0 Specifies the x and y position (in subpixels) of
multisample 1

MS Y1 15:12 0x0 Specifies the x and y position (in subpixels) of
multisample 1

MS_X2 19:16 0x0 Specifies the x and y position (inkgpixels) of
multisample 2

MS_Y2 23:20 0x0 Specifies the x and y position (in subpixels) of
multisample 2

MSBDO_Y 27:24 0x0 Specifies the minimum x and y distance (in subpixels
between the pixel edge and the multisamples. These
values are used in thedt (coarse) scan converter

MSBDO_X 31:28 0x0 Specifies the minimum x and y distance (in subpixels
between the pixel edge and the multisamples. These
values are used in the first (coarse) scan converter

|GB:GB_MSPOS1 - [R/W] - 32 bits - Access: 816/32 - MMReg:0x4014 |

IDESCRIPTION: Specifies the position of multisamples 3 through 5 |

[Field Name |Bits |Default |[Description |

MS_X3 3:0 0x0 Specifies the x and y position (in subpixels) of
multisample 3

MS_Y3 74 0x0 Specifies the x and y position (inkgixels) of
multisample 3

MS_X4 11:8 0x0 Specifies the x and y position (in subpixels) of
multisample 4

MS_Y4 15:12 0x0 Specifies the x and y position (in subpixels) of
multisample 4

MS_X5 19:16 0x0 Specifies the x and y position (in subpixels) of
multisample 5

MS_Y5 23:20 0x0 Specifies the x and y position (in subpixels) of
multisample 5

MSBD1 27:24 0x0 Specifies the minimum distance (in subpixels) betwe)
the pixel edge and the multisamples. This value is us
in the second (quad) scan converter

|GB:GB_PIPE_SELECT - [R/IW] - 32 bits - Access:

8/16/32: MMReg:0x402c |

[DESCRIPTION: Selects which of 4 pipes are active.

© 2008 Advanced Micro Devices, Inc.
Proprietary

172

AMDH Revision 12 February 3, 2008
|Field Name ||Bits “Default ||Description |
IPIPEO_ID [1:0 lox0 IMaps physical pipe 0 to logical pipe ID (def 0). |
[PIPE1_ID [3:2 [lox1 |[Maps plysical pipe 1 to logical pipe ID (def 1). |
|PIPE2_ID ||5:4 ||0x2 ||Maps physical pipe 2 to logical pipe ID (def 2). |
[PIPE3_ID [7:6 l0x3 |[Maps physical pipe 3 to logical pipe ID (def 3). |
PIPE_MASK 11:8 0x0 4b mask, indicates which physical pipes are enabled
none=0x0)-- B3=P3, B2=P2, B1=P1, BO=P8.1:
enabled, 0: disabled
MAX_PIPE 13:12 0x3 2b, indicates, by the fuses, the max number of allow
pipes. 0 = 1 pipe ... 3 = 4 pipesRead Only
BAD_PIPES 17:14 OxF 4b, indicates, by the fuses, the bad pipes: B3E2=P2
B1=P1, BO=PO0- 1: bad, 0: good- Read Only
CONFIG_PIPES 18 0x0 If this bit is set when writing this register, the logical

pipe ID values are assigned automatically based on
values that are read back in the MAX_PIPE and
BAD_PIPES fields. Tis field is always read back as (

POSSIBLE VALUES:
00- Do nothing
01 - Force seHconfiguration

|GB:GB_SELECT - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x401c |

|DESCRIPTION: Specifies various polygon specific selects (fog, dem@fspective). |

[Field Name

|Bits

| Default

| Description |

FOG_SELECT

2:0

0x0

Specifies source for outgoing (GA to SU) fog value.

POSSIBLE VALUES:
00- Select COA
01- Select C1A
02- Select C2A
03- Select C3A
04 - Select 1/{/W)
05- Select Z

DEPTH_SELECT

0x0

Specifies source for outgoing (GA/SU & SU/RAS) de
value.

POSSIBLE VALUES:
00- Select Z
01- Select 1/(1/W)

W_SELECT

0x0

Specifies source for outgoing (1/W) value, used to
disable perspeiee correct colors/textures.

POSSIBLE VALUES:
00- Select (/W)
01- Select 1.0

FOG_STUFF_ENABLE

5

|loxo

||Contr0|s enabling of fog stuffing into texture coordin4

© 2008 Advanced Micro Devices, Inc.
Proprietary

173

AMDA1

Revision 12 February 3, 2008

POSSIBLE VALUES:
00 - Disable fog texture stuffing
01- Enable bg texture stuffing

IFOG_STUFF_TEX

||9:6

lox0

||[Controls which texture gets fog value |

[FOG_STUFF_COMP

[11:10

lox0

|[Controls which component of texture gets fog value |

|GB:GB_TILE_CONFIG - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4018 |

|DESCRIPTION: Speifies the graphics pipeline configuration for rasterization |

[Field Name

|Bits

| Default

||Description |

ENABLE

0

0ox1

Enables tiling, otherwise all tiles receive all polygons

POSSIBLE VALUES:
00- Tiling disabled.
01- Tiling enabled (def).

PIPE COUNT

3:1

0x0

Specifies the number of active pipes and contexts (u
4 pipes, 1 ctx). When this field is written, it is
automatically reduced by hardware so as not to use
pipes than the number indicated in
GB_PIPE_SELECT.MAX_PIPES or the number of
pipes left unmasked GB_PIPE_SELECT.BAD_PIPE
The potentially altered value is read back, rather tha
original value written by software.

POSSIBLE VALUES:
00- RV350 (1 pipe, 1 ctx)
03- R300 (2 pipes, 1 ctx)
067 R4203P @3 pipes,1 ctx)
077 R420 (4 pipes, 1 ctx)

TILE_SIZE

54

ox1

Specifies width & height (square), in pixels (only 16,
available).

POSSIBLE VALUES:
00- 8 pixels.
01- 16 pixels.
02 - 32 pixels.

SUPER_SIZE

8:6

0x0

Specifies numberfdiles and config in super chip
configuration.

POSSIBLE VALUES:
00- 1x1 tile (one 1x1).
01- 2 tiles (two 1x1 : STA,B).
02- 4 tiles (one 2x2).
03- 8 tiles (two 2x2 : STA,B).
04 - 16 tiles (one 4x4).
05- 32 tles (two 4x4 : STA,B).
06 - 64 tiles (one 8x8).
07 - 128 tiles (two 8x8 : STA,B).

© 2008 Advanced Micro Devices, Inc.
Proprietary

174

Revision 12 February 8, 2008
(=
|SUPER_X ||11:9 HOXO ||X Location of chip within super tile. |
ISUPER_Y [14:22 Jjox0 |lY Location of chip within super tile. |
SUPER_TILE 15 0x0 Tile location of chip ira multi super tile config (Super
size of 2,8,32 or 128).
POSSIBLE VALUES:
00- ST-Attile.
01- ST-B tile.
SUBPIXEL 16 0x0 Specifies the precision of subpixels wrt pixels (12 or
POSSIBLE VALUES:
00 - Select 1/12 subpixel preaisi.
01- Select 1/16 subpixel precision.
QUADS_PER_RAS 18:17 0x0 Specifies the number of quads to be sent to each
rasterizer in turn when in RV300B or R300B mode
POSSIBLE VALUES:
00- 4 Quads
01- 8 Quads
02-16 Quads
03- 32 Quads
BB_SCAN 19 0x0 Specifies whether to use an intercept or bounding bc
based calculation for the first (coarse) scan converte
POSSIBLE VALUES:
00- Use intercept based scan converter
01 - Use bounding box based scan converter
ALT_SCAN_EN 20 0x0 Specifies whether to use an altenate scan pattern fo
coarse scan converter
POSSIBLE VALUES:
00- Use normal lefright scan
01- Use alternate leftight-left scan
ALT_OFFSET 21 0x0 Not used- should be 0
POSSIBLEVALUES:
00- Not used
01- Not used
SUBPRECISION |22 lox0 |setto 0
ALT_TILING 23 0x0 Support for 3x2 tiling in 3P mode
POSSIBLE VALUES:
00 - Use default tiling in all tiling modes
01 - Use alternative 3x2 tiling in 3P mode
Z EXTENDED 24 0x0 Support for extended setup Z range from [0,1}25d]
with per pixel clamping
POSSIBLE VALUES:

© 2008 Advanced Micro Devices, Inc.
Proprietary

175

AM Da Revision 12 February B, 2008

00- Use (24.1) Z format, with vertex clamp to
[1.0,0.0]

01- Use (S25.1) format, with vertex clamp to [2.0
2.0] and per pix€]1.0,0.0]

|GB:GB_Z_PEQ_CONFIG - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4028 |
[DESCRIPTION: Specifies the z plane equation configuration. |

|Field Name ||Bits “Default ||Description |
Z PEQ_SIZE 0 0x0 Specifies the z plane equation size.

POSSIBLE VALUES:

00- 4x4 z plane equations (poisampled or aa)
01- 8x8 z plane equations (poisampled only)

© 2008 Advanced Micro Devices, Inc.

Proprietary 176

